def initialize(self, args): """ Initialize internal structures at the beginning of each dialogue :return: Nothing """ if self.agent_role == 'system': # Put your system expert dialogue policy here self.warmup_policy = HandcraftedPolicy({'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = \ dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert dialogue policy here self.warmup_simulator = AgendaBasedUS(usim_args) if 'is_training' in args: self.is_training = bool(args['is_training']) if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize({args['goal']}) else: print('WARNING ! No goal provided for Supervised policy ' 'user simulator @ initialize') self.warmup_simulator.initialize({}) if 'policy_path' in args: self.policy_path = args['policy_path'] if 'learning_rate' in args: self.policy_alpha = args['learning_rate'] if self.sess is None: self.policy_net = self.feed_forward_net_init() self.sess = tf.InteractiveSession() self.sess.run(tf.global_variables_initializer()) self.tf_saver = \ tf.train.Saver(var_list=tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope=self.tf_scope))
def __init__(self, configuration): """ Initialize the internal structures of this agent. :param configuration: a dictionary representing the configuration file """ super(ConversationalSingleAgent, self).__init__() self.configuration = configuration # There is only one agent in this setting self.agent_id = 0 # dialogue statistics self.dialogue_episode = 0 self.dialogue_turn = 0 self.num_successful_dialogues = 0 self.num_task_success = 0 self.cumulative_rewards = 0 self.total_dialogue_turns = 0 # Default meta-parameter values self.minibatch_length = 500 self.train_interval = 50 self.train_epochs = 3 # True values here would imply some default modules self.USE_USR_SIMULATOR = False self.USER_SIMULATOR_NLU = False self.USER_SIMULATOR_NLG = False self.USE_NLG = False self.USE_SPEECH = False self.USER_HAS_INITIATIVE = True self.SAVE_LOG = True self.SAVE_INTERVAL = 10000 # The dialogue will terminate after MAX_TURNS (this agent will issue # a bye() dialogue act. self.MAX_TURNS = 15 self.dialogue_turn = -1 self.ontology = None self.database = None self.domain = None self.global_args = {} self.dialogue_manager = None self.user_model = None self.user_simulator = None self.user_simulator_args = {} self.nlu = None self.nlg = None self.agent_role = None self.agent_goal = None self.goal_generator = None self.curr_state = None self.prev_state = None self.curr_state = None self.prev_usr_utterance = None self.prev_sys_utterance = None self.prev_action = None self.prev_reward = None self.prev_success = None self.prev_task_success = None self.user_model = UserModel() self.recorder = DialogueEpisodeRecorder() # TODO: Handle this properly - get reward function type from config self.reward_func = SlotFillingReward() # self.reward_func = SlotFillingGoalAdvancementReward() if self.configuration: # Error checks for options the config must have if not self.configuration['GENERAL']: raise ValueError('Cannot run Plato without GENERAL settings!') elif not self.configuration['GENERAL']['interaction_mode']: raise ValueError('Cannot run Plato without an ' 'interaction mode!') elif not self.configuration['DIALOGUE']: raise ValueError('Cannot run Plato without DIALOGUE settings!') elif not self.configuration['AGENT_0']: raise ValueError('Cannot run Plato without at least ' 'one agent!') # dialogue domain self.settings if 'DIALOGUE' in self.configuration and \ self.configuration['DIALOGUE']: if 'initiative' in self.configuration['DIALOGUE']: self.USER_HAS_INITIATIVE = bool( self.configuration['DIALOGUE']['initiative'] == 'user' ) self.user_simulator_args['us_has_initiative'] = \ self.USER_HAS_INITIATIVE if self.configuration['DIALOGUE']['domain']: self.domain = self.configuration['DIALOGUE']['domain'] if 'ontology_path' in self.configuration['DIALOGUE']: if os.path.isfile( self.configuration['DIALOGUE']['ontology_path'] ): self.ontology = ontology.Ontology( self.configuration['DIALOGUE']['ontology_path'] ) else: raise FileNotFoundError( 'domain file %s not found' % self.configuration['DIALOGUE']['ontology_path']) # Alternatively, look at global_arguments for ontology path elif 'global_arguments' in self.configuration['GENERAL'] \ and 'ontology' in \ self.configuration['GENERAL']['global_arguments']: if os.path.isfile( self.configuration['GENERAL'][ 'global_arguments']['ontology'] ): self.ontology = ontology.Ontology( self.configuration['GENERAL'][ 'global_arguments']['ontology'] ) else: raise FileNotFoundError( 'domain file %s not found' % self.configuration['GENERAL'][ 'global_arguments']['ontology']) if 'db_path' in self.configuration['DIALOGUE']: if os.path.isfile( self.configuration['DIALOGUE']['db_path'] ): if 'db_type' in self.configuration['DIALOGUE']: if self.configuration['DIALOGUE']['db_type'] == \ 'sql': self.database = database.SQLDataBase( self.configuration['DIALOGUE']['db_path'] ) else: self.database = database.DataBase( self.configuration['DIALOGUE']['db_path'] ) else: # Default to SQL self.database = database.SQLDataBase( self.configuration['DIALOGUE']['db_path'] ) else: raise FileNotFoundError( 'Database file %s not found' % self.configuration['DIALOGUE']['db_path'] ) # Alternatively, look at global arguments for db path elif 'global_arguments' in self.configuration['GENERAL'] \ and 'database' in \ self.configuration['GENERAL']['global_arguments']: if os.path.isfile( self.configuration['GENERAL'][ 'global_arguments']['database'] ): self.database = database.DataBase( self.configuration['GENERAL'][ 'global_arguments']['database'] ) else: raise FileNotFoundError( 'domain file %s not found' % self.configuration['GENERAL'][ 'global_arguments']['ontology']) if 'goals_path' in self.configuration['DIALOGUE']: if os.path.isfile( self.configuration['DIALOGUE']['goals_path'] ): self.goals_path = \ self.configuration['DIALOGUE']['goals_path'] else: raise FileNotFoundError( 'Goals file %s not found' % self.configuration['DIALOGUE']['goals_path'] ) # General settings if 'GENERAL' in self.configuration and \ self.configuration['GENERAL']: if 'global_arguments' in self.configuration['GENERAL']: self.global_args = \ self.configuration['GENERAL']['global_arguments'] if 'experience_logs' in self.configuration['GENERAL']: dialogues_path = None if 'path' in \ self.configuration['GENERAL']['experience_logs']: dialogues_path = \ self.configuration['GENERAL'][ 'experience_logs']['path'] if 'load' in \ self.configuration['GENERAL']['experience_logs'] \ and bool(self.configuration['GENERAL'][ 'experience_logs']['load']): if dialogues_path and os.path.isfile(dialogues_path): self.recorder.load(dialogues_path) else: raise FileNotFoundError( 'dialogue Log file %s not found (did you ' 'provide one?)' % dialogues_path) if 'save' in \ self.configuration['GENERAL']['experience_logs']: self.recorder.set_path(dialogues_path) self.SAVE_LOG = bool( self.configuration['GENERAL'][ 'experience_logs']['save'] ) if self.configuration['GENERAL']['interaction_mode'] == \ 'simulation': self.USE_USR_SIMULATOR = True elif self.configuration['GENERAL']['interaction_mode'] == \ 'speech': self.USE_SPEECH = True self.asr = speech_rec.Recognizer() # Agent Settings # Retrieve agent role if 'role' in self.configuration['AGENT_0']: self.agent_role = self.configuration['AGENT_0']['role'] else: raise ValueError( 'agent: No role assigned for agent {0} in ' 'config!'.format(self.agent_id) ) if self.agent_role == 'user': if self.ontology and self.database: self.goal_generator = GoalGenerator({ 'ontology': self.ontology, 'database': self.database }) else: raise ValueError( 'Conversational Single Agent (user): Cannot generate ' 'goal without ontology and database.' ) # Retrieve agent parameters if 'max_turns' in self.configuration['AGENT_0']: self.MAX_TURNS = self.configuration['AGENT_0']['max_turns'] if 'train_interval' in self.configuration['AGENT_0']: self.train_interval = \ self.configuration['AGENT_0']['train_interval'] if 'train_minibatch' in self.configuration['AGENT_0']: self.minibatch_length = \ self.configuration['AGENT_0']['train_minibatch'] if 'train_epochs' in self.configuration['AGENT_0']: self.train_epochs = \ self.configuration['AGENT_0']['train_epochs'] if 'save_interval' in self.configuration['AGENT_0']: self.SAVE_INTERVAL = \ self.configuration['AGENT_0']['save_interval'] # usr Simulator # Check for specific simulator self.settings, otherwise # default to agenda if 'USER_SIMULATOR' in self.configuration['AGENT_0']: # Agent 0 simulator configuration if 'package' in \ self.configuration['AGENT_0']['USER_SIMULATOR'] and \ 'class' in \ self.configuration['AGENT_0']['USER_SIMULATOR']: if 'arguments' in \ self.configuration['AGENT_0']['USER_SIMULATOR']: self.user_simulator_args =\ self.configuration[ 'AGENT_0']['USER_SIMULATOR']['arguments'] self.user_simulator_args.update(self.global_args) self.user_simulator = \ ConversationalGenericAgent.load_module( self.configuration['AGENT_0']['USER_SIMULATOR'][ 'package'], self.configuration['AGENT_0']['USER_SIMULATOR'][ 'class'], self.user_simulator_args ) if hasattr(self.user_simulator, 'nlu'): self.USER_SIMULATOR_NLU = self.user_simulator.nlu if hasattr(self.user_simulator, 'nlg'): self.USER_SIMULATOR_NLG = self.user_simulator.nlg else: # Fallback to agenda based simulator with default settings self.user_simulator = AgendaBasedUS( self.user_simulator_args ) # NLU Settings if 'NLU' in self.configuration['AGENT_0']: nlu_args = {} if 'package' in self.configuration['AGENT_0']['NLU'] and \ 'class' in self.configuration['AGENT_0']['NLU']: if 'arguments' in \ self.configuration['AGENT_0']['NLU']: nlu_args = \ self.configuration['AGENT_0']['NLU']['arguments'] nlu_args.update(self.global_args) self.nlu = \ ConversationalGenericAgent.load_module( self.configuration['AGENT_0']['NLU'][ 'package'], self.configuration['AGENT_0']['NLU'][ 'class'], nlu_args ) # DM Settings if 'DM' in self.configuration['AGENT_0']: dm_args = dict( zip( ['settings', 'ontology', 'database', 'domain', 'agent_id', 'agent_role'], [self.configuration, self.ontology, self.database, self.domain, self.agent_id, self.agent_role ] ) ) if 'package' in self.configuration['AGENT_0']['DM'] and \ 'class' in self.configuration['AGENT_0']['DM']: if 'arguments' in \ self.configuration['AGENT_0']['DM']: dm_args.update( self.configuration['AGENT_0']['DM']['arguments'] ) dm_args.update(self.global_args) self.dialogue_manager = \ ConversationalGenericAgent.load_module( self.configuration['AGENT_0']['DM'][ 'package'], self.configuration['AGENT_0']['DM'][ 'class'], dm_args ) # NLG Settings if 'NLG' in self.configuration['AGENT_0']: nlg_args = {} if 'package' in self.configuration['AGENT_0']['NLG'] and \ 'class' in self.configuration['AGENT_0']['NLG']: if 'arguments' in \ self.configuration['AGENT_0']['NLG']: nlg_args = \ self.configuration['AGENT_0']['NLG']['arguments'] nlg_args.update(self.global_args) self.nlg = \ ConversationalGenericAgent.load_module( self.configuration['AGENT_0']['NLG'][ 'package'], self.configuration['AGENT_0']['NLG'][ 'class'], nlg_args ) if self.nlg: self.USE_NLG = True # True if at least one module is training self.IS_TRAINING = self.nlu and self.nlu.training or \ self.dialogue_manager and self.dialogue_manager.training or \ self.nlg and self.nlg.training
class ConversationalSingleAgent(ConversationalAgent): """ Essentially the dialogue system. Will be able to interact with: - Simulated Users via: - dialogue Acts - Text - Human Users via: - Text - Speech - Online crowd? - parser """ def __init__(self, configuration): """ Initialize the internal structures of this agent. :param configuration: a dictionary representing the configuration file """ super(ConversationalSingleAgent, self).__init__() self.configuration = configuration # There is only one agent in this setting self.agent_id = 0 # dialogue statistics self.dialogue_episode = 0 self.dialogue_turn = 0 self.num_successful_dialogues = 0 self.num_task_success = 0 self.cumulative_rewards = 0 self.total_dialogue_turns = 0 # Default meta-parameter values self.minibatch_length = 500 self.train_interval = 50 self.train_epochs = 3 # True values here would imply some default modules self.USE_USR_SIMULATOR = False self.USER_SIMULATOR_NLU = False self.USER_SIMULATOR_NLG = False self.USE_NLG = False self.USE_SPEECH = False self.USER_HAS_INITIATIVE = True self.SAVE_LOG = True self.SAVE_INTERVAL = 10000 # The dialogue will terminate after MAX_TURNS (this agent will issue # a bye() dialogue act. self.MAX_TURNS = 15 self.dialogue_turn = -1 self.ontology = None self.database = None self.domain = None self.global_args = {} self.dialogue_manager = None self.user_model = None self.user_simulator = None self.user_simulator_args = {} self.nlu = None self.nlg = None self.agent_role = None self.agent_goal = None self.goal_generator = None self.curr_state = None self.prev_state = None self.curr_state = None self.prev_usr_utterance = None self.prev_sys_utterance = None self.prev_action = None self.prev_reward = None self.prev_success = None self.prev_task_success = None self.user_model = UserModel() self.recorder = DialogueEpisodeRecorder() # TODO: Handle this properly - get reward function type from config self.reward_func = SlotFillingReward() # self.reward_func = SlotFillingGoalAdvancementReward() if self.configuration: # Error checks for options the config must have if not self.configuration['GENERAL']: raise ValueError('Cannot run Plato without GENERAL settings!') elif not self.configuration['GENERAL']['interaction_mode']: raise ValueError('Cannot run Plato without an ' 'interaction mode!') elif not self.configuration['DIALOGUE']: raise ValueError('Cannot run Plato without DIALOGUE settings!') elif not self.configuration['AGENT_0']: raise ValueError('Cannot run Plato without at least ' 'one agent!') # dialogue domain self.settings if 'DIALOGUE' in self.configuration and \ self.configuration['DIALOGUE']: if 'initiative' in self.configuration['DIALOGUE']: self.USER_HAS_INITIATIVE = bool( self.configuration['DIALOGUE']['initiative'] == 'user' ) self.user_simulator_args['us_has_initiative'] = \ self.USER_HAS_INITIATIVE if self.configuration['DIALOGUE']['domain']: self.domain = self.configuration['DIALOGUE']['domain'] if 'ontology_path' in self.configuration['DIALOGUE']: if os.path.isfile( self.configuration['DIALOGUE']['ontology_path'] ): self.ontology = ontology.Ontology( self.configuration['DIALOGUE']['ontology_path'] ) else: raise FileNotFoundError( 'domain file %s not found' % self.configuration['DIALOGUE']['ontology_path']) # Alternatively, look at global_arguments for ontology path elif 'global_arguments' in self.configuration['GENERAL'] \ and 'ontology' in \ self.configuration['GENERAL']['global_arguments']: if os.path.isfile( self.configuration['GENERAL'][ 'global_arguments']['ontology'] ): self.ontology = ontology.Ontology( self.configuration['GENERAL'][ 'global_arguments']['ontology'] ) else: raise FileNotFoundError( 'domain file %s not found' % self.configuration['GENERAL'][ 'global_arguments']['ontology']) if 'db_path' in self.configuration['DIALOGUE']: if os.path.isfile( self.configuration['DIALOGUE']['db_path'] ): if 'db_type' in self.configuration['DIALOGUE']: if self.configuration['DIALOGUE']['db_type'] == \ 'sql': self.database = database.SQLDataBase( self.configuration['DIALOGUE']['db_path'] ) else: self.database = database.DataBase( self.configuration['DIALOGUE']['db_path'] ) else: # Default to SQL self.database = database.SQLDataBase( self.configuration['DIALOGUE']['db_path'] ) else: raise FileNotFoundError( 'Database file %s not found' % self.configuration['DIALOGUE']['db_path'] ) # Alternatively, look at global arguments for db path elif 'global_arguments' in self.configuration['GENERAL'] \ and 'database' in \ self.configuration['GENERAL']['global_arguments']: if os.path.isfile( self.configuration['GENERAL'][ 'global_arguments']['database'] ): self.database = database.DataBase( self.configuration['GENERAL'][ 'global_arguments']['database'] ) else: raise FileNotFoundError( 'domain file %s not found' % self.configuration['GENERAL'][ 'global_arguments']['ontology']) if 'goals_path' in self.configuration['DIALOGUE']: if os.path.isfile( self.configuration['DIALOGUE']['goals_path'] ): self.goals_path = \ self.configuration['DIALOGUE']['goals_path'] else: raise FileNotFoundError( 'Goals file %s not found' % self.configuration['DIALOGUE']['goals_path'] ) # General settings if 'GENERAL' in self.configuration and \ self.configuration['GENERAL']: if 'global_arguments' in self.configuration['GENERAL']: self.global_args = \ self.configuration['GENERAL']['global_arguments'] if 'experience_logs' in self.configuration['GENERAL']: dialogues_path = None if 'path' in \ self.configuration['GENERAL']['experience_logs']: dialogues_path = \ self.configuration['GENERAL'][ 'experience_logs']['path'] if 'load' in \ self.configuration['GENERAL']['experience_logs'] \ and bool(self.configuration['GENERAL'][ 'experience_logs']['load']): if dialogues_path and os.path.isfile(dialogues_path): self.recorder.load(dialogues_path) else: raise FileNotFoundError( 'dialogue Log file %s not found (did you ' 'provide one?)' % dialogues_path) if 'save' in \ self.configuration['GENERAL']['experience_logs']: self.recorder.set_path(dialogues_path) self.SAVE_LOG = bool( self.configuration['GENERAL'][ 'experience_logs']['save'] ) if self.configuration['GENERAL']['interaction_mode'] == \ 'simulation': self.USE_USR_SIMULATOR = True elif self.configuration['GENERAL']['interaction_mode'] == \ 'speech': self.USE_SPEECH = True self.asr = speech_rec.Recognizer() # Agent Settings # Retrieve agent role if 'role' in self.configuration['AGENT_0']: self.agent_role = self.configuration['AGENT_0']['role'] else: raise ValueError( 'agent: No role assigned for agent {0} in ' 'config!'.format(self.agent_id) ) if self.agent_role == 'user': if self.ontology and self.database: self.goal_generator = GoalGenerator({ 'ontology': self.ontology, 'database': self.database }) else: raise ValueError( 'Conversational Single Agent (user): Cannot generate ' 'goal without ontology and database.' ) # Retrieve agent parameters if 'max_turns' in self.configuration['AGENT_0']: self.MAX_TURNS = self.configuration['AGENT_0']['max_turns'] if 'train_interval' in self.configuration['AGENT_0']: self.train_interval = \ self.configuration['AGENT_0']['train_interval'] if 'train_minibatch' in self.configuration['AGENT_0']: self.minibatch_length = \ self.configuration['AGENT_0']['train_minibatch'] if 'train_epochs' in self.configuration['AGENT_0']: self.train_epochs = \ self.configuration['AGENT_0']['train_epochs'] if 'save_interval' in self.configuration['AGENT_0']: self.SAVE_INTERVAL = \ self.configuration['AGENT_0']['save_interval'] # usr Simulator # Check for specific simulator self.settings, otherwise # default to agenda if 'USER_SIMULATOR' in self.configuration['AGENT_0']: # Agent 0 simulator configuration if 'package' in \ self.configuration['AGENT_0']['USER_SIMULATOR'] and \ 'class' in \ self.configuration['AGENT_0']['USER_SIMULATOR']: if 'arguments' in \ self.configuration['AGENT_0']['USER_SIMULATOR']: self.user_simulator_args =\ self.configuration[ 'AGENT_0']['USER_SIMULATOR']['arguments'] self.user_simulator_args.update(self.global_args) self.user_simulator = \ ConversationalGenericAgent.load_module( self.configuration['AGENT_0']['USER_SIMULATOR'][ 'package'], self.configuration['AGENT_0']['USER_SIMULATOR'][ 'class'], self.user_simulator_args ) if hasattr(self.user_simulator, 'nlu'): self.USER_SIMULATOR_NLU = self.user_simulator.nlu if hasattr(self.user_simulator, 'nlg'): self.USER_SIMULATOR_NLG = self.user_simulator.nlg else: # Fallback to agenda based simulator with default settings self.user_simulator = AgendaBasedUS( self.user_simulator_args ) # NLU Settings if 'NLU' in self.configuration['AGENT_0']: nlu_args = {} if 'package' in self.configuration['AGENT_0']['NLU'] and \ 'class' in self.configuration['AGENT_0']['NLU']: if 'arguments' in \ self.configuration['AGENT_0']['NLU']: nlu_args = \ self.configuration['AGENT_0']['NLU']['arguments'] nlu_args.update(self.global_args) self.nlu = \ ConversationalGenericAgent.load_module( self.configuration['AGENT_0']['NLU'][ 'package'], self.configuration['AGENT_0']['NLU'][ 'class'], nlu_args ) # DM Settings if 'DM' in self.configuration['AGENT_0']: dm_args = dict( zip( ['settings', 'ontology', 'database', 'domain', 'agent_id', 'agent_role'], [self.configuration, self.ontology, self.database, self.domain, self.agent_id, self.agent_role ] ) ) if 'package' in self.configuration['AGENT_0']['DM'] and \ 'class' in self.configuration['AGENT_0']['DM']: if 'arguments' in \ self.configuration['AGENT_0']['DM']: dm_args.update( self.configuration['AGENT_0']['DM']['arguments'] ) dm_args.update(self.global_args) self.dialogue_manager = \ ConversationalGenericAgent.load_module( self.configuration['AGENT_0']['DM'][ 'package'], self.configuration['AGENT_0']['DM'][ 'class'], dm_args ) # NLG Settings if 'NLG' in self.configuration['AGENT_0']: nlg_args = {} if 'package' in self.configuration['AGENT_0']['NLG'] and \ 'class' in self.configuration['AGENT_0']['NLG']: if 'arguments' in \ self.configuration['AGENT_0']['NLG']: nlg_args = \ self.configuration['AGENT_0']['NLG']['arguments'] nlg_args.update(self.global_args) self.nlg = \ ConversationalGenericAgent.load_module( self.configuration['AGENT_0']['NLG'][ 'package'], self.configuration['AGENT_0']['NLG'][ 'class'], nlg_args ) if self.nlg: self.USE_NLG = True # True if at least one module is training self.IS_TRAINING = self.nlu and self.nlu.training or \ self.dialogue_manager and self.dialogue_manager.training or \ self.nlg and self.nlg.training def __del__(self): """ Do some house-keeping and save the models. :return: nothing """ if self.recorder and self.SAVE_LOG: self.recorder.save() if self.nlu: self.nlu.save() if self.dialogue_manager: self.dialogue_manager.save() if self.nlg: self.nlg.save() self.curr_state = None self.prev_state = None self.curr_state = None self.prev_usr_utterance = None self.prev_sys_utterance = None self.prev_action = None self.prev_reward = None self.prev_success = None self.prev_task_success = None def initialize(self): """ Initializes the conversational agent based on settings in the configuration file. :return: Nothing """ self.dialogue_episode = 0 self.dialogue_turn = 0 self.num_successful_dialogues = 0 self.num_task_success = 0 self.cumulative_rewards = 0 if self.nlu: self.nlu.initialize({}) self.dialogue_manager.initialize({}) if self.nlg: self.nlg.initialize({}) self.curr_state = None self.prev_state = None self.curr_state = None self.prev_usr_utterance = None self.prev_sys_utterance = None self.prev_action = None self.prev_reward = None self.prev_success = None self.prev_task_success = None def start_dialogue(self, args=None): """ Perform initial dialogue turn. :param args: optional args :return: """ self.dialogue_turn = 0 sys_utterance = '' if self.USE_USR_SIMULATOR: self.user_simulator.initialize(self.user_simulator_args) print('DEBUG > usr goal:') print(self.user_simulator.goal) self.dialogue_manager.restart({}) if not self.USER_HAS_INITIATIVE: # sys_response = self.dialogue_manager.respond() sys_response = [DialogueAct('welcomemsg', [])] if self.USE_NLG: sys_utterance = self.nlg.generate_output( {'dacts': sys_response} ) print('SYSTEM > %s ' % sys_utterance) if self.USE_SPEECH: try: tts = gTTS(sys_utterance) tts.save('sys_output.mp3') os.system('afplay sys_output.mp3') except Exception as e: print( 'WARNING: gTTS encountered an error: {0}. ' 'Falling back to sys TTS.'.format(e) ) os.system('say ' + sys_utterance) else: print( 'SYSTEM > %s ' % '; '. join([str(sr) for sr in sys_response]) ) if self.USE_USR_SIMULATOR: usim_input = sys_response if self.USER_SIMULATOR_NLU and self.USE_NLG: usim_input = self.user_simulator.nlu.process_input( sys_utterance ) self.user_simulator.receive_input(usim_input) rew, success, task_success = self.reward_func.calculate( self.dialogue_manager.get_state(), sys_response, self.user_simulator.goal ) else: rew, success, task_success = 0, None, None self.recorder.record( deepcopy(self.dialogue_manager.get_state()), self.dialogue_manager.get_state(), sys_response, rew, success, task_success, output_utterance=sys_utterance ) self.dialogue_turn += 1 self.prev_state = None # Re-initialize these for good measure self.curr_state = None self.prev_usr_utterance = None self.prev_sys_utterance = None self.prev_action = None self.prev_reward = None self.prev_success = None self.prev_task_success = None self.continue_dialogue() def continue_dialogue(self): """ Perform next dialogue turn. :return: nothing """ usr_utterance = '' sys_utterance = '' if self.USE_USR_SIMULATOR: usr_input = self.user_simulator.respond() # TODO: THIS FIRST IF WILL BE HANDLED BY ConversationalAgentGeneric # -- SHOULD NOT LIVE HERE if isinstance(self.user_simulator, DTLUserSimulator): print('USER (nlg) > %s \n' % usr_input) usr_input = self.nlu.process_input( usr_input, self.dialogue_manager.get_state() ) elif self.USER_SIMULATOR_NLG: print('USER > %s \n' % usr_input) if self.nlu: usr_input = self.nlu.process_input(usr_input) # Otherwise it will just print the user's nlg but use the # simulator's output DActs to proceed. else: print('USER (DACT) > %s \n' % '; '.join( [str(ui) for ui in usr_input])) else: if self.USE_SPEECH: # Listen for input from the microphone with speech_rec.Microphone() as source: print('(listening...)') audio = self.asr.listen(source, phrase_time_limit=3) try: # This uses the default key usr_utterance = self.asr.recognize_google(audio) print("Google ASR: " + usr_utterance) except speech_rec.UnknownValueError: print("Google ASR did not understand you") except speech_rec.RequestError as e: print("Google ASR request error: {0}".format(e)) else: usr_utterance = input('USER > ') # Process the user's utterance if self.nlu: usr_input = self.nlu.process_input( usr_utterance, self.dialogue_manager.get_state() ) else: raise EnvironmentError( 'agent: No nlu defined for ' 'text-based interaction!' ) self.dialogue_manager.receive_input(usr_input) # Keep track of prev_state, for the DialogueEpisodeRecorder # Store here because this is the state that the dialogue manager # will use to make a decision. self.curr_state = deepcopy(self.dialogue_manager.get_state()) if self.dialogue_turn < self.MAX_TURNS: sys_response = self.dialogue_manager.generate_output() else: # Force dialogue stop sys_response = [DialogueAct('bye', [])] if self.USE_NLG: sys_utterance = self.nlg.generate_output({'dacts': sys_response}) print('SYSTEM > %s ' % sys_utterance) if self.USE_SPEECH: try: tts = gTTS(text=sys_utterance, lang='en') tts.save('sys_output.mp3') os.system('afplay sys_output.mp3') except: print('WARNING: gTTS encountered an error. ' 'Falling back to sys TTS.') os.system('say ' + sys_utterance) else: print('SYSTEM > %s ' % '; '.join([str(sr) for sr in sys_response])) if self.USE_USR_SIMULATOR: usim_input = sys_response if self.USER_SIMULATOR_NLU and self.USE_NLG: usim_input = \ self.user_simulator.nlu.process_input(sys_utterance) self.user_simulator.receive_input(usim_input) rew, success, task_success = \ self.reward_func.calculate( self.dialogue_manager.get_state(), sys_response, self.user_simulator.goal ) else: rew, success, task_success = 0, None, None if self.prev_state: self.recorder.record( self.prev_state, self.curr_state, self.prev_action, self.prev_reward, self.prev_success, input_utterance=self.prev_usr_utterance, output_utterance=self.prev_sys_utterance, task_success=self.prev_task_success ) self.dialogue_turn += 1 self.prev_state = deepcopy(self.curr_state) self.prev_action = deepcopy(sys_response) self.prev_usr_utterance = deepcopy(usr_utterance) self.prev_sys_utterance = deepcopy(sys_utterance) self.prev_reward = rew self.prev_success = success self.prev_task_success = task_success def end_dialogue(self): """ Perform final dialogue turn. Train and save models if applicable. :return: nothing """ # Record final state self.recorder.record( self.curr_state, self.curr_state, self.prev_action, self.prev_reward, self.prev_success, input_utterance=self.prev_usr_utterance, output_utterance=self.prev_sys_utterance, task_success=self.prev_task_success, force_terminate=True ) self.dialogue_episode += 1 if self.IS_TRAINING: if self.dialogue_episode % self.train_interval == 0 and \ len(self.recorder.dialogues) >= self.minibatch_length: for epoch in range(self.train_epochs): print('Training epoch {0} of {1}'.format( (epoch+1), self.train_epochs) ) # Sample minibatch minibatch = random.sample( self.recorder.dialogues, self.minibatch_length ) if self.nlu and self.nlu.training: self.nlu.train(minibatch) if self.dialogue_manager.is_training(): self.dialogue_manager.train(minibatch) if self.nlg and self.nlg.training: self.nlg.train(minibatch) # Keep track of dialogue statistics self.cumulative_rewards += \ self.recorder.dialogues[-1][-1]['cumulative_reward'] print('CUMULATIVE REWARD: {0}'. format(self.recorder.dialogues[-1][-1]['cumulative_reward'])) if self.dialogue_turn > 0: self.total_dialogue_turns += self.dialogue_turn if self.dialogue_episode % self.SAVE_INTERVAL == 0: if self.nlu: self.nlu.save() if self.dialogue_manager: self.dialogue_manager.save() if self.nlg: self.nlg.save() # Count successful dialogues if self.recorder.dialogues[-1][-1]['success']: print('SUCCESS (Subjective)!') self.num_successful_dialogues += \ int(self.recorder.dialogues[-1][-1]['success']) else: print('FAILURE (Subjective).') if self.recorder.dialogues[-1][-1]['task_success']: self.num_task_success += \ int(self.recorder.dialogues[-1][-1]['task_success']) print('OBJECTIVE TASK SUCCESS: {0}'. format(self.recorder.dialogues[-1][-1]['task_success'])) def terminated(self): """ Check if this agent is at a terminal state. :return: True or False """ return self.dialogue_manager.at_terminal_state() or \ self.dialogue_turn > self.MAX_TURNS
class SupervisedPolicy(dialogue_policy.DialoguePolicy): def __init__(self, args): """ Initialize parameters and internal structures :param args: dictionary containing the policy's arguments """ super(SupervisedPolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology else: raise ValueError('SupervisedPolicy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('SupervisedPolicy: No ontology provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database else: raise ValueError('SupervisedPolicy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('SupervisedPolicy: No database provided') self.agent_id = args['agent_id'] if 'agent_id' in args else 0 self.agent_role = args['agent_role'] \ if 'agent_role' in args else 'system' domain = args['domain'] if 'domain' in args else None # True for greedy, False for stochastic self.IS_GREEDY_POLICY = False self.policy_path = None self.policy_net = None self.tf_scope = "policy_" + self.agent_role + '_' + str(self.agent_id) self.sess = None # The system and user expert policies (optional) self.warmup_policy = None self.warmup_simulator = None # Default value self.is_training = True # Extract lists of slots that are frequently used self.informable_slots = \ deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = \ deepcopy(self.ontology.ontology['requestable'] + ['this', 'signature']) self.system_requestable_slots = \ deepcopy(self.ontology.ontology['system_requestable']) self.dstc2_acts = None if not domain: # Default to CamRest dimensions self.NStateFeatures = 56 # Default to CamRest actions self.dstc2_acts = [ 'repeat', 'canthelp', 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'welcomemsg', 'expl-conf', 'select', 'offer', 'reqalts', 'confirm-domain', 'confirm' ] else: # Try to identify number of state features if domain in ['SlotFilling', 'CamRest']: d_state = \ SlotFillingDialogueState( {'slots': self.system_requestable_slots}) # Plato does not use action masks (rules to define which # actions are valid from each state) and so training can # be harder. This becomes easier if we have a smaller # action set. # Sub-case for CamRest if domain == 'CamRest': # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_sys = [ 'offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm' ] # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_usr = [ 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm' ] if self.agent_role == 'system': self.dstc2_acts = self.dstc2_acts_sys elif self.agent_role == 'user': self.dstc2_acts = self.dstc2_acts_usr else: print('Warning! domain has not been defined. Using ' 'Slot-Filling dialogue State') d_state = \ SlotFillingDialogueState({'slots': self.informable_slots}) d_state.initialize() self.NStateFeatures = len(self.encode_state(d_state)) print('Supervised dialogue policy automatically determined number ' 'of state features: {0}'.format(self.NStateFeatures)) if domain == 'CamRest': self.NActions = len(self.dstc2_acts) + len(self.requestable_slots) if self.agent_role == 'system': self.NActions += len(self.system_requestable_slots) else: self.NActions += len(self.requestable_slots) else: self.NActions = 5 self.policy_alpha = 0.05 self.tf_saver = None def initialize(self, args): """ Initialize internal structures at the beginning of each dialogue :return: Nothing """ if self.agent_role == 'system': # Put your system expert dialogue policy here self.warmup_policy = HandcraftedPolicy({'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = \ dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert dialogue policy here self.warmup_simulator = AgendaBasedUS(usim_args) if 'is_training' in args: self.is_training = bool(args['is_training']) if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize({args['goal']}) else: print('WARNING ! No goal provided for Supervised policy ' 'user simulator @ initialize') self.warmup_simulator.initialize({}) if 'policy_path' in args: self.policy_path = args['policy_path'] if 'learning_rate' in args: self.policy_alpha = args['learning_rate'] if self.sess is None: self.policy_net = self.feed_forward_net_init() self.sess = tf.InteractiveSession() self.sess.run(tf.global_variables_initializer()) self.tf_saver = \ tf.train.Saver(var_list=tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope=self.tf_scope)) def restart(self, args): """ Re-initialize relevant parameters / variables at the beginning of each dialogue. :return: """ if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize(args) else: print('WARNING! No goal provided for Supervised policy user ' 'simulator @ restart') self.warmup_simulator.initialize({}) def next_action(self, state): """ Consults the dialogue policy to produce the agent's response :param state: the current dialogue state :return: a list of dialogue acts, representing the agent's response """ if self.is_training: # This is a Supervised dialogue policy, so no exploration here. if self.agent_role == 'system': return self.warmup_policy.next_action(state) else: self.warmup_simulator.receive_input(state.user_acts, state.user_goal) return self.warmup_simulator.generate_output() pl_calculated, pl_state, pl_newvals, pl_optimizer, pl_loss = \ self.policy_net obs_vector = np.expand_dims(self.encode_state(state), axis=0) probs = self.sess.run(pl_calculated, feed_dict={pl_state: obs_vector}) if self.IS_GREEDY_POLICY: # Greedy policy: Return action with maximum value from the given # state sys_acts = \ self.decode_action( np.argmax(probs), self.agent_role == 'system') else: # Stochastic dialogue policy: Sample action wrt Q values if any(np.isnan(probs[0])): print('WARNING! Supervised dialogue policy: NAN detected in a' 'ction probabilities! Selecting random action.') return self.decode_action( random.choice(range(0, self.NActions)), self.agent_role == 'system') # Make sure weights are positive min_p = min(probs[0]) if min_p < 0: positive_weights = [p + abs(min_p) for p in probs[0]] else: positive_weights = probs[0] # Normalize weights positive_weights /= sum(positive_weights) sys_acts = \ self.decode_action( random.choices( [a for a in range(self.NActions)], weights=positive_weights)[0], self.agent_role == 'system') return sys_acts def feed_forward_net_init(self): """ Initialize the feed forward network. :return: some useful variables """ self.tf_scope = "policy_" + self.agent_role + '_' + str(self.agent_id) with tf.variable_scope(self.tf_scope): state = tf.placeholder("float", [None, self.NStateFeatures]) newvals = tf.placeholder("float", [None, self.NActions]) w1 = \ tf.get_variable("w1", [self.NStateFeatures, self.NStateFeatures]) b1 = tf.get_variable("b1", [self.NStateFeatures]) h1 = tf.nn.sigmoid(tf.matmul(state, w1) + b1) w2 = \ tf.get_variable("w2", [self.NStateFeatures, self.NStateFeatures]) b2 = tf.get_variable("b2", [self.NStateFeatures]) h2 = tf.nn.sigmoid(tf.matmul(h1, w2) + b2) w3 = tf.get_variable("w3", [self.NStateFeatures, self.NActions]) b3 = tf.get_variable("b3", [self.NActions]) calculated = tf.nn.softmax(tf.matmul(h2, w3) + b3) diffs = calculated - newvals loss = tf.nn.l2_loss(diffs) optimizer = \ tf.train.AdamOptimizer(self.policy_alpha).minimize(loss) return calculated, state, newvals, optimizer, loss def train(self, dialogues): """ Train the neural net dialogue policy model :param dialogues: dialogue experience :return: nothing """ # If called by accident if not self.is_training: return pl_calculated, pl_state, pl_newvals, pl_optimizer, pl_loss =\ self.policy_net states = [] actions = [] for dialogue in dialogues: for index, turn in enumerate(dialogue): act_enc = \ self.encode_action(turn['action'], self.agent_role == 'system') if act_enc > -1: states.append(self.encode_state(turn['state'])) action = np.zeros(self.NActions) action[act_enc] = 1 actions.append(action) # Train dialogue policy self.sess.run(pl_optimizer, feed_dict={ pl_state: states, pl_newvals: actions }) def encode_state(self, state): """ Encodes the dialogue state into a vector. :param state: the state to encode :return: int - a unique state encoding """ temp = [int(state.is_terminal_state)] temp.append(1) if state.system_made_offer else temp.append(0) # If the agent plays the role of the user it needs access to its own # goal if self.agent_role == 'user': # The user agent needs to know which constraints and requests # need to be communicated and which of them # actually have. if state.user_goal: for c in self.informable_slots: if c != 'name': if c in state.user_goal.constraints: temp.append(1) else: temp.append(0) for c in self.informable_slots: if c != 'name': if c in state.user_goal.actual_constraints and \ state.user_goal.actual_constraints[c].value: temp.append(1) else: temp.append(0) for r in self.requestable_slots: if r in state.user_goal.requests: temp.append(1) else: temp.append(0) for r in self.requestable_slots: if r in state.user_goal.actual_requests and \ state.user_goal.actual_requests[r].value: temp.append(1) else: temp.append(0) else: temp += [0] * 2 * (len(self.informable_slots) - 1 + len(self.requestable_slots)) if self.agent_role == 'system': for value in state.slots_filled.values(): # This contains the requested slot temp.append(1) if value else temp.append(0) for r in self.requestable_slots: temp.append(1) if r == state.requested_slot else temp.append(0) return temp def encode_action(self, actions, system=True): """ Encode the action, given the role. Note that does not have to match the agent's role, as the agent may be encoding another agent's action (e.g. a system encoding the previous user act). :param actions: actions to be encoded :param system: whether the role whose action we are encoding is a 'system' :return: the encoded action """ if not actions: print('WARNING: Supervised dialogue policy action encoding called ' 'with empty actions list (returning -1).') return -1 action = actions[0] slot = None if action.params and action.params[0].slot: slot = action.params[0].slot if system: if self.dstc2_acts_sys and action.intent in self.dstc2_acts_sys: return self.dstc2_acts_sys.index(action.intent) if slot: if action.intent == 'request' and \ slot in self.system_requestable_slots: return len(self.dstc2_acts_sys) + \ self.system_requestable_slots.index(slot) if action.intent == 'inform' and \ slot in self.requestable_slots: return len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ self.requestable_slots.index(slot) else: if self.dstc2_acts_usr and action.intent in self.dstc2_acts_usr: return self.dstc2_acts_usr.index(action.intent) if slot: if action.intent == 'request' and \ slot in self.requestable_slots: return len(self.dstc2_acts_usr) + \ self.requestable_slots.index(slot) if action.intent == 'inform' and \ slot in self.requestable_slots: return len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ self.requestable_slots.index(slot) # Default fall-back action print('Supervised ({0}) policy action encoder warning: Selecting ' 'default action (unable to encode: {1})!'.format( self.agent_role, action)) return -1 def decode_action(self, action_enc, system=True): """ Decode the action, given the role. Note that does not have to match the agent's role, as the agent may be decoding another agent's action (e.g. a system decoding the previous user act). :param action_enc: action encoding to be decoded :param system: whether the role whose action we are decoding is a 'system' :return: the decoded action """ if system: if action_enc < len(self.dstc2_acts_sys): return [DialogueAct(self.dstc2_acts_sys[action_enc], [])] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.system_requestable_slots[ action_enc - len(self.dstc2_acts_sys)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) +\ len(self.requestable_slots): index = action_enc - \ len(self.dstc2_acts_sys) - \ len(self.system_requestable_slots) return [ DialogueAct('inform', [ DialogueActItem(self.requestable_slots[index], Operator.EQ, '') ]) ] else: if action_enc < len(self.dstc2_acts_usr): return [DialogueAct(self.dstc2_acts_usr[action_enc], [])] if action_enc < len(self.dstc2_acts_usr) + \ len(self.requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.requestable_slots[action_enc - len(self.dstc2_acts_usr)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots): return [ DialogueAct('inform', [ DialogueActItem( self.requestable_slots[ action_enc - len(self.dstc2_acts_usr) - len(self.requestable_slots)], Operator.EQ, '') ]) ] def save(self, path=None): """ Saves the policy model to the provided path :param path: path to save the model to :return: """ # Don't save if not training if not self.is_training: return pol_path = path if not pol_path: pol_path = self.policy_path if not pol_path: pol_path = 'models/policies/supervised_policy_' + \ self.agent_role + '_' + str(self.agent_id) # If the directory does not exist, create it if not os.path.exists(os.path.dirname(pol_path)): os.makedirs(os.path.dirname(pol_path), exist_ok=True) if self.sess is not None and self.is_training: save_path = self.tf_saver.save(self.sess, pol_path) print('Supervised policy model saved at: %s' % save_path) def load(self, path): """ Load the policy model from the provided path :param path: path to load the model from :return: """ pol_path = path if not pol_path: pol_path = self.policy_path if not pol_path: pol_path = 'models/policies/supervised_policy_' + \ self.agent_role + '_' + str(self.agent_id) if os.path.isfile(pol_path + '.meta'): self.policy_net = self.feed_forward_net_init() self.sess = tf.InteractiveSession() self.tf_saver = \ tf.train.Saver( var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.tf_scope)) self.tf_saver.restore(self.sess, pol_path) print('Supervised policy model loaded from {0}.'.format(pol_path)) else: print('WARNING! Supervised policy cannot load policy ' 'model from {0}!'.format(pol_path))
class ReinforcePolicy(dialogue_policy.DialoguePolicy): def __init__(self, args): """ Initialize parameters and internal structures :param args: the policy's arguments """ super(ReinforcePolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology else: raise ValueError('ReinforcePolicy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('ReinforcePolicy: No ontology provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database else: raise ValueError('ReinforcePolicy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('ReinforcePolicy: No database provided') self.agent_id = args['agent_id'] if 'agent_id' in args else 0 self.agent_role = \ args['agent_role'] if 'agent_role' in args else 'system' domain = args['domain'] if 'domain' in args else None self.alpha = args['alpha'] if 'alpha' in args else 0.2 self.gamma = args['gamma'] if 'gamma' in args else 0.95 self.epsilon = args['epsilon'] if 'epsilon' in args else 0.95 self.alpha_decay_rate = \ args['alpha_decay'] if 'alpha_decay' in args else 0.995 self.exploration_decay_rate = \ args['epsilon_decay'] if 'epsilon_decay' in args else 0.9995 self.IS_GREEDY = False self.policy_path = None self.weights = None self.sess = None # System and user expert policies (optional) self.warmup_policy = None self.warmup_simulator = None if self.agent_role == 'system': # Put your system expert policy here self.warmup_policy = HandcraftedPolicy({'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = \ dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert policy here self.warmup_simulator = AgendaBasedUS(usim_args) self.tf_scope = "policy_" + self.agent_role + '_' + str(self.agent_id) # Default value self.is_training = True # Extract lists of slots that are frequently used self.informable_slots = \ deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = \ deepcopy(self.ontology.ontology['requestable']) self.system_requestable_slots = \ deepcopy(self.ontology.ontology['system_requestable']) if not domain: # Default to CamRest dimensions self.NStateFeatures = 56 # Default to CamRest actions self.dstc2_acts = [ 'inform', 'offer', 'request', 'canthelp', 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'reqalts', 'confirm-domain', 'confirm' ] else: # Try to identify number of state features if domain in ['CamRest', 'SFH', 'SlotFilling']: d_state = \ SlotFillingDialogueState( {'slots': self.system_requestable_slots}) # Plato does not use action masks (rules to define which # actions are valid from each state) and so training can # be harder. This becomes easier if we have a smaller # action set. # Sub-case for CamRest if domain == 'CamRest': # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_sys = [ 'offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm' ] # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_usr = [ 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm' ] else: print('Warning! domain has not been defined. Using ' 'Slot-Filling dialogue State') d_state = \ SlotFillingDialogueState({'slots': self.informable_slots}) d_state.initialize() self.NStateFeatures = len(self.encode_state(d_state)) print('Reinforce policy {0} automatically determined ' 'number of state features: {1}'.format( self.agent_role, self.NStateFeatures)) if domain == 'CamRest' and self.dstc2_acts_sys: if self.agent_role == 'system': self.NActions = \ len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) self.NOtherActions = \ len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots) elif self.agent_role == 'user': self.NActions = \ len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots) self.NOtherActions = \ len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) else: if self.agent_role == 'system': self.NActions = \ 3 + len(self.system_requestable_slots) + \ len(self.requestable_slots) self.NOtherActions = \ 2 + len(self.requestable_slots) +\ len(self.requestable_slots) elif self.agent_role == 'user': self.NActions = \ 2 + len(self.requestable_slots) + \ len(self.requestable_slots) self.NOtherActions = \ 3 + len(self.system_requestable_slots) + \ len(self.requestable_slots) print('Reinforce {0} policy Number of Actions: {1}'.format( self.agent_role, self.NActions)) def initialize(self, args): """ Initialize internal structures at the beginning of each dialogue :return: Nothing """ if 'is_training' in args: self.is_training = bool(args['is_training']) if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize({args['goal']}) else: print('WARNING ! No goal provided for Reinforce policy ' 'user simulator @ initialize') self.warmup_simulator.initialize({}) if 'policy_path' in args: self.policy_path = args['policy_path'] if 'learning_rate' in args: self.alpha = args['learning_rate'] if 'learning_decay_rate' in args: self.alpha_decay_rate = args['learning_decay_rate'] if 'discount_factor' in args: self.gamma = args['discount_factor'] if 'exploration_rate' in args: self.alpha = args['exploration_rate'] if 'exploration_decay_rate' in args: self.exploration_decay_rate = args['exploration_decay_rate'] if self.weights is None: self.weights = np.random.rand(self.NStateFeatures, self.NActions) def restart(self, args): """ Re-initialize relevant parameters / variables at the beginning of each dialogue. :return: nothing """ if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize(args) else: print('WARNING! No goal provided for Reinforce ' 'policy user simulator @ restart') self.warmup_simulator.initialize({}) def next_action(self, state): """ Consults the policy to produce the agent's response :param state: the current dialogue state :return: a list of dialogue acts, representing the agent's response """ if self.is_training and random.random() < self.epsilon: if random.random() < 0.5: print('--- {0}: Selecting warmup action.'.format( self.agent_role)) if self.agent_role == 'system': return self.warmup_policy.next_action(state) else: self.warmup_simulator.receive_input( state.user_acts, state.user_goal) return self.warmup_simulator.respond() else: print('--- {0}: Selecting random action.'.format( self.agent_role)) return self.decode_action( random.choice(range(0, self.NActions)), self.agent_role == "system") # Probabilistic policy: Sample from action wrt probabilities probs = self.calculate_policy(self.encode_state(state)) if any(np.isnan(probs)): print('WARNING! NAN detected in action probabilities! Selecting ' 'random action.') return self.decode_action(random.choice(range(0, self.NActions)), self.agent_role == "system") if self.IS_GREEDY: # Get greedy action max_pi = max(probs) maxima = [i for i, j in enumerate(probs) if j == max_pi] # Break ties randomly if maxima: sys_acts = \ self.decode_action( random.choice(maxima), self.agent_role == 'system') else: print(f'--- {self.agent_role}: Warning! No maximum value ' f'identified for policy. Selecting random action.') return self.decode_action( random.choice(range(0, self.NActions)), self.agent_role == 'system') else: # Pick from top 3 actions top_3 = np.argsort(-probs)[0:2] sys_acts = \ self.decode_action( random.choices( top_3, probs[top_3])[0], self.agent_role == 'system') return sys_acts @staticmethod def softmax(x): """ Calculates the softmax of x :param x: a number :return: the softmax of the number """ e_x = np.exp(x - np.max(x)) out = e_x / e_x.sum() return out @staticmethod def softmax_gradient(x): """ Calculates the gradient of the softmax :param x: a number :return: the gradient of the softmax """ x = np.asarray(x) x_reshaped = x.reshape(-1, 1) return np.diagflat(x_reshaped) - np.dot(x_reshaped, x_reshaped.T) def calculate_policy(self, state): """ Calculates the probabilities for each action from the given state :param state: the current dialogue state :return: probabilities of actions """ dot_prod = np.dot(state, self.weights) exp_dot_prod = np.exp(dot_prod) return exp_dot_prod / np.sum(exp_dot_prod) def train(self, dialogues): """ Train the policy network :param dialogues: dialogue experience :return: nothing """ # If called by accident if not self.is_training: return for dialogue in dialogues: discount = self.gamma if len(dialogue) > 1: dialogue[-2]['reward'] = dialogue[-1]['reward'] rewards = [t['reward'] for t in dialogue] norm_rewards = \ (rewards - np.mean(rewards)) / (np.std(rewards) + 0.000001) for (t, turn) in enumerate(dialogue): act_enc = self.encode_action(turn['action'], self.agent_role == 'system') if act_enc < 0: continue state_enc = self.encode_state(turn['state']) if len(state_enc) != self.NStateFeatures: raise ValueError(f'Reinforce dialogue policy ' f'{self.agent_role} mismatch in state' f'dimensions: State Features: ' f'{self.NStateFeatures} != State ' f'Encoding Length: {len(state_enc)}') # Calculate the gradients # Call policy again to retrieve the probability of the # action taken probabilities = self.calculate_policy(state_enc) softmax_deriv = self.softmax_gradient(probabilities)[act_enc] log_policy_grad = softmax_deriv / probabilities[act_enc] gradient = \ np.asarray( state_enc)[None, :].transpose().dot( log_policy_grad[None, :]) gradient = np.clip(gradient, -1.0, 1.0) # Train policy self.weights += \ self.alpha * gradient * norm_rewards[t] * discount self.weights = np.clip(self.weights, -1, 1) discount *= self.gamma if self.alpha > 0.01: self.alpha *= self.alpha_decay_rate if self.epsilon > 0.5: self.epsilon *= self.exploration_decay_rate print(f'REINFORCE train, alpha: {self.alpha}, epsilon: {self.epsilon}') def encode_state(self, state): """ Encodes the dialogue state into a vector. :param state: the state to encode :return: int - a unique state encoding """ temp = [int(state.is_terminal_state), int(state.system_made_offer)] if self.agent_role == 'user': # The user agent needs to know which constraints and requests # need to be communicated and which of them # actually have. if state.user_goal: for c in self.informable_slots: if c != 'name': if c in state.user_goal.constraints: temp.append(1) else: temp.append(0) for c in self.informable_slots: if c != 'name': if c in state.user_goal.actual_constraints and \ state.user_goal.actual_constraints[c].value: temp.append(1) else: temp.append(0) for r in self.requestable_slots: if r in state.user_goal.requests: temp.append(1) else: temp.append(0) for r in self.requestable_slots: if r in state.user_goal.actual_requests and \ state.user_goal.actual_requests[r].value: temp.append(1) else: temp.append(0) else: temp += [0] * 2 * (len(self.informable_slots) - 1 + len(self.requestable_slots)) if self.agent_role == 'system': for value in state.slots_filled.values(): # This contains the requested slot temp.append(1) if value else temp.append(0) for r in self.requestable_slots: temp.append(1) if r == state.requested_slot else temp.append(0) return temp def encode_action(self, actions, system=True): """ Encode the action, given the role. Note that does not have to match the agent's role, as the agent may be encoding another agent's action (e.g. a system encoding the previous user act). :param actions: actions to be encoded :param system: whether the role whose action we are encoding is a 'system' :return: the encoded action """ # TODO: Handle multiple actions if not actions: print('WARNING: Reinforce dialogue policy action encoding called ' 'with empty actions list (returning 0).') return -1 action = actions[0] if system: if self.dstc2_acts_sys and action.intent in self.dstc2_acts_sys: return self.dstc2_acts_sys.index(action.intent) if action.intent == 'request': return len(self.dstc2_acts_sys) + \ self.system_requestable_slots.index( action.params[0].slot) if action.intent == 'inform': return len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ self.requestable_slots.index(action.params[0].slot) else: if self.dstc2_acts_usr and action.intent in self.dstc2_acts_usr: return self.dstc2_acts_usr.index(action.intent) if action.intent == 'request': return len(self.dstc2_acts_usr) + \ self.requestable_slots.index(action.params[0].slot) if action.intent == 'inform': return len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ self.requestable_slots.index(action.params[0].slot) # Default fall-back action print('Reinforce ({0}) olicy action encoder warning: Selecting ' 'default action (unable to encode: {1})!'.format( self.agent_role, action)) return -1 def decode_action(self, action_enc, system=True): """ Decode the action, given the role. Note that does not have to match the agent's role, as the agent may be decoding another agent's action (e.g. a system decoding the previous user act). :param action_enc: action encoding to be decoded :param system: whether the role whose action we are decoding is a 'system' :return: the decoded action """ if system: if action_enc < len(self.dstc2_acts_sys): return [DialogueAct(self.dstc2_acts_sys[action_enc], [])] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.system_requestable_slots[ action_enc - len(self.dstc2_acts_sys)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ len(self.requestable_slots): index = action_enc - len(self.dstc2_acts_sys) - \ len(self.system_requestable_slots) return [ DialogueAct('inform', [ DialogueActItem(self.requestable_slots[index], Operator.EQ, '') ]) ] else: if action_enc < len(self.dstc2_acts_usr): return [DialogueAct(self.dstc2_acts_usr[action_enc], [])] if action_enc < len(self.dstc2_acts_usr) + \ len(self.requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.requestable_slots[action_enc - len(self.dstc2_acts_usr)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots): return [ DialogueAct('inform', [ DialogueActItem( self.requestable_slots[ action_enc - len(self.dstc2_acts_usr) - len(self.requestable_slots)], Operator.EQ, '') ]) ] # Default fall-back action print('Reinforce dialogue policy ({0}) policy action decoder warning: ' 'Selecting default action (index: {1})!'.format( self.agent_role, action_enc)) return [DialogueAct('bye', [])] def save(self, path=None): """ Saves the policy model to the provided path :param path: path to save the model to :return: """ # Don't save if not training if not self.is_training: return if not path: path = 'models/policies/reinforce.pkl' print('No policy file name provided. Using default: {0}'.format( path)) # If the directory does not exist, create it if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path), exist_ok=True) obj = { 'weights': self.weights, 'alpha': self.alpha, 'alpha_decay_rate': self.alpha_decay_rate, 'epsilon': self.epsilon, 'exploration_decay_rate': self.exploration_decay_rate } with open(path, 'wb') as file: pickle.dump(obj, file, pickle.HIGHEST_PROTOCOL) def load(self, path=None): """ Load the policy model from the provided path :param path: path to load the model from :return: """ if not path: print('No dialogue policy loaded.') return if isinstance(path, str): if os.path.isfile(path): with open(path, 'rb') as file: obj = pickle.load(file) if 'weights' in obj: self.weights = obj['weights'] if 'alpha' in obj: self.alpha = obj['alpha'] if 'alpha_decay_rate' in obj: self.alpha_decay_rate = obj['alpha_decay_rate'] if 'epsilon' in obj: self.epsilon = obj['epsilon'] if 'exploration_decay_rate' in obj: self.exploration_decay_rate = \ obj['exploration_decay_rate'] print('Reinforce policy loaded from {0}.'.format(path)) else: print('Warning! Reinforce policy file %s not found' % path) else: print('Warning! Unacceptable value for Reinforce policy ' 'file name: %s ' % path)
def __init__(self, args): """ Initialize parameters and internal structures :param args: the policy's arguments """ super(ReinforcePolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology else: raise ValueError('ReinforcePolicy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('ReinforcePolicy: No ontology provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database else: raise ValueError('ReinforcePolicy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('ReinforcePolicy: No database provided') self.agent_id = args['agent_id'] if 'agent_id' in args else 0 self.agent_role = \ args['agent_role'] if 'agent_role' in args else 'system' domain = args['domain'] if 'domain' in args else None self.alpha = args['alpha'] if 'alpha' in args else 0.2 self.gamma = args['gamma'] if 'gamma' in args else 0.95 self.epsilon = args['epsilon'] if 'epsilon' in args else 0.95 self.alpha_decay_rate = \ args['alpha_decay'] if 'alpha_decay' in args else 0.995 self.exploration_decay_rate = \ args['epsilon_decay'] if 'epsilon_decay' in args else 0.9995 self.IS_GREEDY = False self.policy_path = None self.weights = None self.sess = None # System and user expert policies (optional) self.warmup_policy = None self.warmup_simulator = None if self.agent_role == 'system': # Put your system expert policy here self.warmup_policy = HandcraftedPolicy({'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = \ dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert policy here self.warmup_simulator = AgendaBasedUS(usim_args) self.tf_scope = "policy_" + self.agent_role + '_' + str(self.agent_id) # Default value self.is_training = True # Extract lists of slots that are frequently used self.informable_slots = \ deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = \ deepcopy(self.ontology.ontology['requestable']) self.system_requestable_slots = \ deepcopy(self.ontology.ontology['system_requestable']) if not domain: # Default to CamRest dimensions self.NStateFeatures = 56 # Default to CamRest actions self.dstc2_acts = [ 'inform', 'offer', 'request', 'canthelp', 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'reqalts', 'confirm-domain', 'confirm' ] else: # Try to identify number of state features if domain in ['CamRest', 'SFH', 'SlotFilling']: d_state = \ SlotFillingDialogueState( {'slots': self.system_requestable_slots}) # Plato does not use action masks (rules to define which # actions are valid from each state) and so training can # be harder. This becomes easier if we have a smaller # action set. # Sub-case for CamRest if domain == 'CamRest': # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_sys = [ 'offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm' ] # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_usr = [ 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm' ] else: print('Warning! domain has not been defined. Using ' 'Slot-Filling dialogue State') d_state = \ SlotFillingDialogueState({'slots': self.informable_slots}) d_state.initialize() self.NStateFeatures = len(self.encode_state(d_state)) print('Reinforce policy {0} automatically determined ' 'number of state features: {1}'.format( self.agent_role, self.NStateFeatures)) if domain == 'CamRest' and self.dstc2_acts_sys: if self.agent_role == 'system': self.NActions = \ len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) self.NOtherActions = \ len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots) elif self.agent_role == 'user': self.NActions = \ len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots) self.NOtherActions = \ len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) else: if self.agent_role == 'system': self.NActions = \ 3 + len(self.system_requestable_slots) + \ len(self.requestable_slots) self.NOtherActions = \ 2 + len(self.requestable_slots) +\ len(self.requestable_slots) elif self.agent_role == 'user': self.NActions = \ 2 + len(self.requestable_slots) + \ len(self.requestable_slots) self.NOtherActions = \ 3 + len(self.system_requestable_slots) + \ len(self.requestable_slots) print('Reinforce {0} policy Number of Actions: {1}'.format( self.agent_role, self.NActions))
def __init__(self, args): """ Initialize parameters and internal structures :param args: dictionary containing the dialogue_policy's settings """ super(WoLFPHCPolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology elif isinstance(ontology, str): self.ontology = Ontology(ontology) else: raise ValueError('WoLFPHCPolicy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('WoLFPHCPolicy: No ontology provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database elif isinstance(database, str): self.database = DataBase(database) else: raise ValueError('WoLFPHCPolicy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('WoLFPHCPolicy: No database provided') self.agent_role = \ args['agent_role'] if 'agent_role' in args else 'system' self.alpha = args['alpha'] if 'alpha' in args else 0.2 self.gamma = args['gamma'] if 'gamma' in args else 0.95 self.epsilon = args['epsilon'] if 'epsilon' in args else 0.95 self.alpha_decay_rate = \ args['alpha_decay'] if 'alpha_decay' in args else 0.995 self.exploration_decay_rate = \ args['epsilon_decay'] if 'epsilon_decay' in args else 0.9995 self.IS_GREEDY_POLICY = False # TODO: Put these as arguments in the config self.d_win = 0.0025 self.d_lose = 0.01 self.is_training = False self.Q = {} self.pi = {} self.mean_pi = {} self.state_counter = {} self.pp = pprint.PrettyPrinter(width=160) # For debug! # System and user expert policies (optional) self.warmup_policy = None self.warmup_simulator = None if self.agent_role == 'system': # Put your system expert dialogue_policy here self.warmup_policy = \ slot_filling_policy.HandcraftedPolicy({ 'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert dialogue_policy here self.warmup_simulator = AgendaBasedUS(usim_args) # Sub-case for CamRest self.dstc2_acts_sys = self.dstc2_acts_usr = None # Plato does not use action masks (rules to define which # actions are valid from each state) and so training can # be harder. This becomes easier if we have a smaller # action set. # Does not include inform and request that are modelled together with # their arguments self.dstc2_acts_sys = [ 'offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm' ] # Does not include inform and request that are modelled together with # their arguments self.dstc2_acts_usr = [ 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm' ] # Extract lists of slots that are frequently used self.informable_slots = \ deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = \ deepcopy(self.ontology.ontology['requestable']) self.system_requestable_slots = \ deepcopy(self.ontology.ontology['system_requestable']) if self.dstc2_acts_sys: if self.agent_role == 'system': # self.NActions = 5 # self.NOtherActions = 4 self.NActions = \ len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) self.NOtherActions = \ len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) elif self.agent_role == 'user': # self.NActions = 4 # self.NOtherActions = 5 self.NActions = \ len(self.dstc2_acts_usr) + \ len(self.requestable_slots) +\ len(self.system_requestable_slots) self.NOtherActions = len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) else: if self.agent_role == 'system': self.NActions = \ 5 + len(self.ontology.ontology['system_requestable']) + \ len(self.ontology.ontology['requestable']) self.NOtherActions = \ 4 + 2 * len(self.ontology.ontology['requestable']) elif self.agent_role == 'user': self.NActions = \ 4 + 2 * len(self.ontology.ontology['requestable']) self.NOtherActions = \ 5 + len(self.ontology.ontology['system_requestable']) + \ len(self.ontology.ontology['requestable']) self.statistics = {'supervised_turns': 0, 'total_turns': 0}
class WoLFPHCPolicy(dialogue_policy.DialoguePolicy): def __init__(self, args): """ Initialize parameters and internal structures :param args: dictionary containing the dialogue_policy's settings """ super(WoLFPHCPolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology elif isinstance(ontology, str): self.ontology = Ontology(ontology) else: raise ValueError('WoLFPHCPolicy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('WoLFPHCPolicy: No ontology provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database elif isinstance(database, str): self.database = DataBase(database) else: raise ValueError('WoLFPHCPolicy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('WoLFPHCPolicy: No database provided') self.agent_role = \ args['agent_role'] if 'agent_role' in args else 'system' self.alpha = args['alpha'] if 'alpha' in args else 0.2 self.gamma = args['gamma'] if 'gamma' in args else 0.95 self.epsilon = args['epsilon'] if 'epsilon' in args else 0.95 self.alpha_decay_rate = \ args['alpha_decay'] if 'alpha_decay' in args else 0.995 self.exploration_decay_rate = \ args['epsilon_decay'] if 'epsilon_decay' in args else 0.9995 self.IS_GREEDY_POLICY = False # TODO: Put these as arguments in the config self.d_win = 0.0025 self.d_lose = 0.01 self.is_training = False self.Q = {} self.pi = {} self.mean_pi = {} self.state_counter = {} self.pp = pprint.PrettyPrinter(width=160) # For debug! # System and user expert policies (optional) self.warmup_policy = None self.warmup_simulator = None if self.agent_role == 'system': # Put your system expert dialogue_policy here self.warmup_policy = \ slot_filling_policy.HandcraftedPolicy({ 'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert dialogue_policy here self.warmup_simulator = AgendaBasedUS(usim_args) # Sub-case for CamRest self.dstc2_acts_sys = self.dstc2_acts_usr = None # Plato does not use action masks (rules to define which # actions are valid from each state) and so training can # be harder. This becomes easier if we have a smaller # action set. # Does not include inform and request that are modelled together with # their arguments self.dstc2_acts_sys = [ 'offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm' ] # Does not include inform and request that are modelled together with # their arguments self.dstc2_acts_usr = [ 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm' ] # Extract lists of slots that are frequently used self.informable_slots = \ deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = \ deepcopy(self.ontology.ontology['requestable']) self.system_requestable_slots = \ deepcopy(self.ontology.ontology['system_requestable']) if self.dstc2_acts_sys: if self.agent_role == 'system': # self.NActions = 5 # self.NOtherActions = 4 self.NActions = \ len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) self.NOtherActions = \ len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) elif self.agent_role == 'user': # self.NActions = 4 # self.NOtherActions = 5 self.NActions = \ len(self.dstc2_acts_usr) + \ len(self.requestable_slots) +\ len(self.system_requestable_slots) self.NOtherActions = len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) else: if self.agent_role == 'system': self.NActions = \ 5 + len(self.ontology.ontology['system_requestable']) + \ len(self.ontology.ontology['requestable']) self.NOtherActions = \ 4 + 2 * len(self.ontology.ontology['requestable']) elif self.agent_role == 'user': self.NActions = \ 4 + 2 * len(self.ontology.ontology['requestable']) self.NOtherActions = \ 5 + len(self.ontology.ontology['system_requestable']) + \ len(self.ontology.ontology['requestable']) self.statistics = {'supervised_turns': 0, 'total_turns': 0} def initialize(self, args): """ Initialize internal structures at the beginning of each dialogue :return: Nothing """ if 'train' in args: self.is_training = bool(args['train']) if 'learning_rate' in args: self.alpha = float(args['learning_rate']) if 'learning_decay_rate' in args: self.alpha_decay_rate = float(args['learning_decay_rate']) if 'exploration_rate' in args: self.epsilon = float(args['exploration_rate']) if 'exploration_decay_rate' in args: self.exploration_decay_rate = \ float(args['exploration_decay_rate']) if 'gamma' in args: self.gamma = float(args['gamma']) if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize({args['goal']}) else: print('WARNING ! No goal provided for WoLF PHC policy ' 'user simulator @ initialize') self.warmup_simulator.initialize({}) def restart(self, args): """ Re-initialize relevant parameters / variables at the beginning of each dialogue. :return: nothing """ if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize(args) else: print('WARNING! No goal provided for WoLF PHC policy user ' 'simulator @ restart') self.warmup_simulator.initialize({}) def next_action(self, state): """ Consults the dialogue_policy to produce the agent's response :param state: the current dialogue state :return: a list of dialogue acts, representing the agent's response """ state_enc = self.encode_state(state) self.statistics['total_turns'] += 1 if state_enc not in self.pi or \ (self.is_training and random.random() < self.epsilon): if not self.is_training: if not self.pi: print(f'\nWARNING! WoLF-PHC pi is empty ' f'({self.agent_role}). Did you load the correct ' f'file?\n') else: print(f'\nWARNING! WoLF-PHC state not found in policy ' f'pi ({self.agent_role}).\n') if random.random() < 0.35: print('--- {0}: Selecting warmup action.'.format( self.agent_role)) self.statistics['supervised_turns'] += 1 if self.agent_role == 'system': return self.warmup_policy.next_action(state) else: self.warmup_simulator.receive_input( state.user_acts, state.user_goal) return self.warmup_simulator.respond() else: print('--- {0}: Selecting random action.'.format( self.agent_role)) return self.decode_action( random.choice(range(0, self.NActions)), self.agent_role == 'system') if self.IS_GREEDY_POLICY: # Get greedy action max_pi = max(self.pi[state_enc][:-1]) # Do not consider 'UNK' maxima = \ [i for i, j in enumerate(self.pi[state_enc]) if j == max_pi] # Break ties randomly if maxima: sys_acts = \ self.decode_action(random.choice(maxima), self.agent_role == 'system') else: print('--- {0}: Warning! No maximum value identified for ' 'dialogue policy. Selecting random action.'.format( self.agent_role)) return self.decode_action( random.choice(range(0, self.NActions)), self.agent_role == 'system') else: # Sample next action sys_acts = \ self.decode_action( random.choices(range(len(self.pi[state_enc])), self.pi[state_enc])[0], self.agent_role == 'system') return sys_acts def encode_state(self, state): """ Encodes the dialogue state into an index used to address the Q matrix. :param state: the state to encode :return: int - a unique state encoding """ temp = [int(state.is_terminal_state)] temp.append(1) if state.system_made_offer else temp.append(0) if self.agent_role == 'user': # The user agent needs to know which constraints and requests # need to be communicated and which of them # actually have. if state.user_goal: for c in self.informable_slots: if c != 'name': if c in state.user_goal.constraints and \ state.user_goal.constraints[c].value: temp.append(1) else: temp.append(0) if c in state.user_goal.actual_constraints and \ state.user_goal.actual_constraints[c].value: temp.append(1) else: temp.append(0) for r in self.requestable_slots: if r in state.user_goal.requests: temp.append(1) else: temp.append(0) if r in state.user_goal.actual_requests and \ state.user_goal.actual_requests[r].value: temp.append(1) else: temp.append(0) else: temp += \ [0] * 2*(len(self.informable_slots)-1 + len(self.requestable_slots)) if self.agent_role == 'system': for value in state.slots_filled.values(): # This contains the requested slot temp.append(1) if value else temp.append(0) for r in self.requestable_slots: temp.append(1) if r == state.requested_slot else temp.append(0) # Encode state state_enc = 0 for t in temp: state_enc = (state_enc << 1) | t return state_enc def encode_action(self, actions, system=True): """ Encode the action, given the role. Note that does not have to match the agent's role, as the agent may be encoding another agent's action (e.g. a system encoding the previous user act). :param actions: actions to be encoded :param system: whether the role whose action we are encoding is a 'system' :return: the encoded action """ # TODO: Handle multiple actions if not actions: print('WARNING: WoLF-PHC dialogue_policy action encoding called ' 'with empty actions list (returning -1).') return -1 action = actions[0] if system: if self.dstc2_acts_sys and action.intent in self.dstc2_acts_sys: return self.dstc2_acts_sys.index(action.intent) if action.intent == 'request': if action.params[0].slot not in self.system_requestable_slots: return -1 return len(self.dstc2_acts_sys) + \ self.system_requestable_slots.index( action.params[0].slot) if action.intent == 'inform': if action.params[0].slot not in self.requestable_slots: return -1 return len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ self.requestable_slots.index(action.params[0].slot) else: if self.dstc2_acts_usr and action.intent in self.dstc2_acts_usr: return self.dstc2_acts_usr.index(action.intent) if action.intent == 'request': if action.params[0].slot not in self.requestable_slots: return -1 return len(self.dstc2_acts_usr) + \ self.requestable_slots.index(action.params[0].slot) if action.intent == 'inform': if action.params[0].slot not in self.system_requestable_slots: return -1 return len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ self.system_requestable_slots.index( action.params[0].slot) if (self.agent_role == 'system') == system: print('WoLF-PHC ({0}) policy action encoder warning: Selecting ' 'default action (unable to encode: {1})!'.format( self.agent_role, action)) else: print('WoLF-PHC ({0}) policy action encoder warning: Selecting ' 'default action (unable to encode other agent action: {1})!'. format(self.agent_role, action)) return -1 def decode_action(self, action_enc, system=True): """ Decode the action, given the role. Note that does not have to match the agent's role, as the agent may be decoding another agent's action (e.g. a system decoding the previous user act). :param action_enc: action encoding to be decoded :param system: whether the role whose action we are decoding is a 'system' :return: the decoded action """ if system: if action_enc < len(self.dstc2_acts_sys): return [DialogueAct(self.dstc2_acts_sys[action_enc], [])] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.system_requestable_slots[ action_enc - len(self.dstc2_acts_sys)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ len(self.requestable_slots): index = \ action_enc - len(self.dstc2_acts_sys) - \ len(self.system_requestable_slots) return [ DialogueAct('inform', [ DialogueActItem(self.requestable_slots[index], Operator.EQ, '') ]) ] else: if action_enc < len(self.dstc2_acts_usr): return [DialogueAct(self.dstc2_acts_usr[action_enc], [])] if action_enc < len(self.dstc2_acts_usr) + \ len(self.requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.requestable_slots[action_enc - len(self.dstc2_acts_usr)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots): return [ DialogueAct('inform', [ DialogueActItem( self.system_requestable_slots[ action_enc - len(self.dstc2_acts_usr) - len(self.requestable_slots)], Operator.EQ, '') ]) ] # Default fall-back action print('WoLF-PHC dialogue_policy ({0}) policy action decoder warning: ' 'Selecting repeat() action (index: {1})!'.format( self.agent_role, action_enc)) return [DialogueAct('repeat', [])] def train(self, dialogues): """ Train the model using WoLF-PHC. :param dialogues: a list dialogues, which is a list of dialogue turns (state, action, reward triplets). :return: """ if not self.is_training: return for dialogue in dialogues: if len(dialogue) > 1: dialogue[-2]['reward'] = dialogue[-1]['reward'] for turn in dialogue: state_enc = self.encode_state(turn['state']) new_state_enc = self.encode_state(turn['new_state']) role = self.agent_role if 'role' in turn: role = turn['role'] action_enc = \ self.encode_action( turn['action'], role == 'system') # Skip unrecognised actions if action_enc < 0 or turn['action'][0].intent == 'bye': continue if state_enc not in self.Q: self.Q[state_enc] = [0] * self.NActions if new_state_enc not in self.Q: self.Q[new_state_enc] = [0] * self.NActions if state_enc not in self.pi: self.pi[state_enc] = \ [float(1/self.NActions)] * self.NActions if state_enc not in self.mean_pi: self.mean_pi[state_enc] = \ [float(1/self.NActions)] * self.NActions if state_enc not in self.state_counter: self.state_counter[state_enc] = 1 else: self.state_counter[state_enc] += 1 # Update Q self.Q[state_enc][action_enc] = \ ((1 - self.alpha) * self.Q[state_enc][action_enc]) + \ self.alpha * ( turn['reward'] + (self.gamma * np.max(self.Q[new_state_enc]))) # Update mean dialogue_policy estimate for a in range(self.NActions): self.mean_pi[state_enc][a] = \ self.mean_pi[state_enc][a] + \ ((1.0 / self.state_counter[state_enc]) * (self.pi[state_enc][a] - self.mean_pi[state_enc][a])) # Determine delta sum_policy = 0.0 sum_mean_policy = 0.0 for a in range(self.NActions): sum_policy = sum_policy + (self.pi[state_enc][a] * self.Q[state_enc][a]) sum_mean_policy = \ sum_mean_policy + \ (self.mean_pi[state_enc][a] * self.Q[state_enc][a]) if sum_policy > sum_mean_policy: delta = self.d_win else: delta = self.d_lose # Update dialogue_policy estimate max_q_idx = np.argmax(self.Q[state_enc]) d_plus = delta d_minus = ((-1.0) * d_plus) / (self.NActions - 1.0) for a in range(self.NActions): if a == max_q_idx: self.pi[state_enc][a] = \ min(1.0, self.pi[state_enc][a] + d_plus) else: self.pi[state_enc][a] = \ max(0.0, self.pi[state_enc][a] + d_minus) # Constrain pi to a legal probability distribution sum_pi = sum(self.pi[state_enc]) for a in range(self.NActions): self.pi[state_enc][a] /= sum_pi # Decay learning rate after each episode if self.alpha > 0.001: self.alpha *= self.alpha_decay_rate # Decay exploration rate after each episode if self.epsilon > 0.25: self.epsilon *= self.exploration_decay_rate print('[alpha: {0}, epsilon: {1}]'.format(self.alpha, self.epsilon)) def save(self, path=None): """ Saves the dialogue_policy model to the path provided :param path: path to save the model to :return: """ # Don't save if not training if not self.is_training: return if not path: path = 'models/policies/wolf_phc_policy.pkl' print('No dialogue_policy file name provided. Using default: {0}'. format(path)) # If the directory does not exist, create it if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path), exist_ok=True) obj = { 'Q': self.Q, 'pi': self.pi, 'mean_pi': self.mean_pi, 'state_counter': self.state_counter, 'a': self.alpha, 'e': self.epsilon, 'g': self.gamma } with open(path, 'wb') as file: pickle.dump(obj, file, pickle.HIGHEST_PROTOCOL) if self.statistics['total_turns'] > 0: print( 'DEBUG > {0} WoLF PHC dialogue_policy supervision ratio: {1}'. format( self.agent_role, float(self.statistics['supervised_turns'] / self.statistics['total_turns']))) print(f'DEBUG > {self.agent_role} WoLF PHC policy state space ' f'size: {len(self.pi)}') def load(self, path=None): """ Load the dialogue_policy model from the path provided :param path: path to load the model from :return: """ if not path: print('No dialogue_policy loaded.') return if isinstance(path, str): if os.path.isfile(path): with open(path, 'rb') as file: obj = pickle.load(file) if 'Q' in obj: self.Q = obj['Q'] if 'pi' in obj: self.pi = obj['pi'] if 'mean_pi' in obj: self.mean_pi = obj['mean_pi'] if 'state_counter' in obj: self.state_counter = obj['state_counter'] if 'a' in obj: self.alpha = obj['a'] if 'e' in obj: self.epsilon = obj['e'] if 'g' in obj: self.gamma = obj['g'] print('WoLF-PHC dialogue_policy loaded from {0}.'.format( path)) else: print('Warning! WoLF-PHC dialogue_policy file %s not found' % path) else: print('Warning! Unacceptable value for WoLF-PHC policy file name:' ' %s ' % path)
class MinimaxQPolicy(dialogue_policy.DialoguePolicy): def __init__(self, args): """ Initialize parameters and internal structures :param args: the policy's arguments """ super(MinimaxQPolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology else: raise ValueError('MinimaxQPolicy dialogue_policy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('MinimaxQPolicy dialogue_policy: No ontology ' 'provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database else: raise ValueError('MinimaxQPolicy policy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('MinimaxQPolicy policy: No database ' 'provided') self.agent_id = args['agent_id'] if 'agent_id' in args else 0 self.agent_role = \ args['agent_role'] if 'agent_role' in args else 'system' self.alpha = args['alpha'] if 'alpha' in args else 0.2 self.gamma = args['gamma'] if 'gamma' in args else 0.95 self.epsilon = args['epsilon'] if 'epsilon' in args else 0.95 self.alpha_decay = \ args['alpha_decay'] if 'alpha_decay' in args else 0.995 self.epsilon_decay = \ args['epsilon_decay'] if 'epsilon_decay' in args else 0.9995 self.is_training = False self.Q = {} self.V = {} self.pi = {} self.pp = pprint.PrettyPrinter(width=160) # For debug! # System and user expert policies (optional) self.warmup_policy = None self.warmup_simulator = None if self.agent_role == 'system': # Put your system expert dialogue_policy here self.warmup_policy = \ slot_filling_policy.HandcraftedPolicy({ 'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = \ dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert dialogue_policy here self.warmup_simulator = AgendaBasedUS(usim_args) # Sub-case for CamRest self.dstc2_acts_sys = self.dstc2_acts_usr = None # Plato does not use action masks (rules to define which # actions are valid from each state) and so training can # be harder. This becomes easier if we have a smaller # action set. # Does not include inform and request that are modelled together with # their arguments self.dstc2_acts_sys = [ 'offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm' ] # Does not include inform and request that are modelled together with # their arguments self.dstc2_acts_usr = [ 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm' ] # Extract lists of slots that are frequently used self.informable_slots = \ deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = \ deepcopy(self.ontology.ontology['requestable']) self.system_requestable_slots = \ deepcopy(self.ontology.ontology['system_requestable']) if self.dstc2_acts_sys: if self.agent_role == 'system': self.NActions = \ len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) self.NOtherActions = \ len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots) elif self.agent_role == 'user': self.NActions = \ len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots) self.NOtherActions = \ len(self.dstc2_acts_sys) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots) else: if self.agent_role == 'system': self.NActions = \ 5 + \ len(self.ontology.ontology['system_requestable']) + \ len(self.ontology.ontology['requestable']) self.NOtherActions = \ 4 + 2 * len(self.ontology.ontology['requestable']) elif self.agent_role == 'user': self.NActions = \ 4 + 2 * len(self.ontology.ontology['requestable']) self.NOtherActions = \ 5 + len(self.ontology.ontology['system_requestable']) + \ len(self.ontology.ontology['requestable']) def initialize(self, args): """ Initialize internal parameters :return: Nothing """ if 'is_training' in args: self.is_training = bool(args['is_training']) if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize({args['goal']}) else: print('WARNING ! No goal provided for Minimax Q policy ' 'user simulator @ initialize') self.warmup_simulator.initialize({}) def restart(self, args): """ Re-initialize relevant parameters / variables at the beginning of each dialogue. :return: """ if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize(args) else: print('WARNING! No goal provided for Minimax Q policy user ' 'simulator @ restart') self.warmup_simulator.initialize({}) def next_action(self, state): """ Consults the dialogue_policy to produce the agent's response :param state: the current dialogue state :return: a list of dialogue acts, representing the agent's response """ state_enc = self.encode_state(state) if state_enc not in self.pi or \ (self.is_training and random.random() < self.epsilon): if not self.is_training: if not self.pi: print(f'\nWARNING! Minimax Q {self.agent_role} matrix is ' f'empty. Did you load the correct file?\n') else: print(f'\nWARNING! Minimax Q {self.agent_role} state not ' f'found in Q matrix.\n') if random.random() < 0.5: print('--- {0}: Selecting warmup action.'.format( self.agent_role)) if self.agent_role == 'system': return self.warmup_policy.next_action(state) else: self.warmup_simulator.receive_input( state.user_acts, state.user_goal) return self.warmup_simulator.respond() else: print('--- {0}: Selecting random action.'.format( self.agent_role)) return self.decode_action( random.choice(range(0, self.NActions)), self.agent_role == 'system') # Return best action max_pi = max(self.pi[state_enc]) maxima = [i for i, j in enumerate(self.pi[state_enc]) if j == max_pi] # Break ties randomly if maxima: sys_acts = \ self.decode_action( random.choice(maxima), self.agent_role == 'system') else: print('--- {0}: Warning! No maximum value identified for policy. ' 'Selecting random action.'.format(self.agent_role)) return self.decode_action(random.choice(range(0, self.NActions)), self.agent_role == 'system') return sys_acts def encode_state(self, state): """ Encodes the dialogue state into an index used to address the Q matrix. :param state: the state to encode :return: int - a unique state encoding """ temp = [int(state.is_terminal_state)] temp.append(1) if state.system_made_offer else temp.append(0) # If the agent plays the role of the user it needs access to its own # goal if self.agent_role == 'user': # The user agent needs to know which constraints and requests need # to be communicated and which of them # actually have. if state.user_goal: found_unanswered_constr = False found_unanswered_req = False for c in self.informable_slots: if c != 'name': if c in state.user_goal.constraints and \ c not in state.user_goal.actual_constraints: found_unanswered_constr = True break for r in self.requestable_slots: if r in state.user_goal.requests and \ not state.user_goal.requests[r].value: found_unanswered_req = True break temp += \ [int(found_unanswered_constr), int(found_unanswered_req)] else: temp += [0, 0] if self.agent_role == 'system': temp.append(int(state.is_terminal())) temp.append(int(state.system_made_offer)) for value in state.slots_filled.values(): # This contains the requested slot temp.append(1) if value else temp.append(0) for r in self.requestable_slots: temp.append(1) if r == state.requested_slot else temp.append(0) state_enc = 0 for t in temp: state_enc = (state_enc << 1) | t return state_enc def encode_action(self, actions, system=True): """ Encode the action, given the role. Note that does not have to match the agent's role, as the agent may be encoding another agent's action (e.g. a system encoding the previous user act). :param actions: actions to be encoded :param system: whether the role whose action we are encoding is a 'system' :return: the encoded action """ # TODO: Handle multiple actions if not actions: print('WARNING: MinimaxQ policy action encoding called ' 'with empty actions list (returning -1).') return -1 action = actions[0] if system: if self.dstc2_acts_sys and action.intent in self.dstc2_acts_sys: return self.dstc2_acts_sys.index(action.intent) if action.intent == 'request': return len(self.dstc2_acts_sys) + \ self.system_requestable_slots.index( action.params[0].slot) if action.intent == 'inform': return len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ self.requestable_slots.index( action.params[0].slot) else: if self.dstc2_acts_usr and action.intent in self.dstc2_acts_usr: return self.dstc2_acts_usr.index(action.intent) if action.intent == 'request': return len(self.dstc2_acts_usr) + \ self.requestable_slots.index(action.params[0].slot) if action.intent == 'inform': return len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ self.system_requestable_slots.index( action.params[0].slot) if (self.agent_role == 'system') == system: print('MinimaxQ ({0}) policy action encoder warning: Selecting ' 'default action (unable to encode: {1})!'.format( self.agent_role, action)) else: print('MinimaxQ ({0}) policy action encoder warning: Selecting ' 'default action (unable to encode other agent action: ' '{1})!'.format(self.agent_role, action)) return -1 def decode_action(self, action_enc, system=True): """ Decode the action, given the role. Note that does not have to match the agent's role, as the agent may be decoding another agent's action (e.g. a system decoding the previous user act). :param action_enc: action encoding to be decoded :param system: whether the role whose action we are decoding is a 'system' :return: the decoded action """ if system: if action_enc < len(self.dstc2_acts_sys): return [DialogueAct(self.dstc2_acts_sys[action_enc], [])] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.system_requestable_slots[ action_enc - len(self.dstc2_acts_sys)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ len(self.requestable_slots): index = \ action_enc - len(self.dstc2_acts_sys) - \ len(self.system_requestable_slots) return [ DialogueAct('inform', [ DialogueActItem(self.requestable_slots[index], Operator.EQ, '') ]) ] else: if action_enc < len(self.dstc2_acts_usr): return [DialogueAct(self.dstc2_acts_usr[action_enc], [])] if action_enc < len(self.dstc2_acts_usr) + \ len(self.requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.requestable_slots[action_enc - len(self.dstc2_acts_usr)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ len(self.system_requestable_slots): return [ DialogueAct('inform', [ DialogueActItem( self.system_requestable_slots[ action_enc - len(self.dstc2_acts_usr) - len(self.requestable_slots)], Operator.EQ, '') ]) ] # Default fall-back action print('MinimaxQ dialogue_policy ({0}) policy action decoder warning: ' 'Selecting repeat() action ' '(index: {1})!'.format(self.agent_role, action_enc)) return [DialogueAct('repeat', [])] def train(self, dialogues): """ Train the model using MinimaxQ. :param dialogues: a list dialogues, which is a list of dialogue turns (state, action, reward triplets). :return: """ if not self.is_training: return for dialogue in dialogues: if len(dialogue) > 1: dialogue[-2]['reward'] = dialogue[-1]['reward'] for turn in dialogue: state_enc = self.encode_state(turn['state']) new_state_enc = self.encode_state(turn['new_state']) action_enc = \ self.encode_action( turn['action'], self.agent_role == 'system') other_action_enc = \ self.encode_action( turn['state'].user_acts, self.agent_role != 'system') if action_enc < 0 or other_action_enc < 0 or \ turn['action'][0].intent == 'bye': continue if state_enc not in self.Q: self.Q[state_enc] = [] for oa in range(self.NOtherActions): self.Q[state_enc].append([]) for a in range(self.NActions): self.Q[state_enc][oa].append(1) if state_enc not in self.pi: self.pi[state_enc] = float(1 / self.NActions) if action_enc not in self.Q[state_enc][other_action_enc]: self.Q[state_enc][other_action_enc][action_enc] = 0 if new_state_enc not in self.V: self.V[new_state_enc] = 0 if new_state_enc not in self.pi: self.pi[new_state_enc] = float(1 / self.NActions) delta = turn['reward'] + self.gamma * self.V[new_state_enc] # Only update Q values (actor) that lead to an increase in Q # if delta > self.Q[state_enc][other_action_enc][action_enc]: self.Q[state_enc][other_action_enc][action_enc] += \ self.alpha * delta # Update V (critic) self.V[state_enc] = self.maxmin(state_enc) # Decay learning rate after each episode if self.alpha > 0.001: self.alpha *= self.alpha_decay # Decay exploration rate after each episode if self.epsilon > 0.25: self.epsilon *= self.epsilon_decay print('MiniMaxQ [alpha: {0}, epsilon: {1}]'.format( self.alpha, self.epsilon)) def maxmin(self, state_enc, retry=False): """ Solve the maxmin problem :param state_enc: the encoding to the state :param retry: :return: """ c = np.zeros(self.NActions + 1) c[0] = -1 A_ub = np.ones((self.NOtherActions, self.NActions + 1)) A_ub[:, 1:] = -np.asarray(self.Q[state_enc]) b_ub = np.zeros(self.NOtherActions) A_eq = np.ones((1, self.NActions + 1)) A_eq[0, 0] = 0 b_eq = [1] bounds = ((None, None), ) + ((0, 1), ) * self.NActions res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds) if res.success: self.pi[state_enc] = res.x[1:] elif not retry: return self.maxmin(state_enc, retry=True) else: print("Alert : %s" % res.message) if state_enc in self.V: return self.V[state_enc] else: print('Warning, state not in V, returning 0.') return 0 return res.x[0] def save(self, path=None): """ Save the model in the path provided :param path: path to dave the model to :return: nothing """ # Don't save if not training if not self.is_training: return if not path: path = 'models/policies/minimax_q_policy.pkl' print('No dialogue_policy file name provided. Using default: {0}'. format(path)) # If the directory does not exist, create it if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path), exist_ok=True) obj = { 'Q': self.Q, 'V': self.V, 'pi': self.pi, 'a': self.alpha, 'e': self.epsilon, 'g': self.gamma } with open(path, 'wb') as file: pickle.dump(obj, file, pickle.HIGHEST_PROTOCOL) def load(self, path): """ Load the model from the path provided :param path: path to load the model from :return: nothing """ if not path: print('No dialogue_policy loaded.') return if isinstance(path, str): if os.path.isfile(path): with open(path, 'rb') as file: obj = pickle.load(file) if 'Q' in obj: self.Q = obj['Q'] if 'V' in obj: self.V = obj['V'] if 'pi' in obj: self.pi = obj['pi'] if 'a' in obj: self.alpha = obj['a'] if 'e' in obj: self.epsilon = obj['e'] if 'g' in obj: self.gamma = obj['g'] print('Q dialogue_policy loaded from {0}.'.format(path)) else: print('Warning! Q dialogue_policy file %s not found' % path) else: print('Warning! Unacceptable value for Q policy file name: %s ' % path)
def __init__(self, args): """ Initialize parameters and internal structures :param args: the policy's arguments """ super(QPolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology else: raise ValueError('QPolicy dialogue policy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('QPolicy dialogue policy: No ontology ' 'provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database else: raise ValueError('QPolicy dialogue policy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('QPolicy dialogue policy: No database ' 'provided') domain = args['domain'] if 'domain' in args else None self.agent_id = args['agent_id'] if 'agent_id' in args else 0 self.agent_role = \ args['agent_role'] if 'agent_role' in args else 'system' self.alpha = args['alpha'] if 'alpha' in args else 0.2 self.gamma = args['gamma'] if 'gamma' in args else 0.95 self.epsilon = args['epsilon'] if 'epsilon' in args else 0.95 self.alpha_decay = \ args['alpha_decay'] if 'alpha_decay' in args else 0.995 self.epsilon_decay = \ args['epsilon_decay'] if 'epsilon_decay' in args else 0.9995 self.is_training = False self.IS_GREEDY_POLICY = True self.Q = {} self.pp = pprint.PrettyPrinter(width=160) # For debug! # System and user expert policies (optional) self.warmup_policy = None self.warmup_simulator = None if self.agent_role == 'system': # Put your system expert dialogue policy here self.warmup_policy = \ slot_filling_policy.HandcraftedPolicy({ 'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = \ dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert dialogue policy here self.warmup_simulator = AgendaBasedUS(usim_args) # Extract lists of slots that are frequently used self.informable_slots = \ deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = \ deepcopy(self.ontology.ontology['requestable']) self.system_requestable_slots = \ deepcopy(self.ontology.ontology['system_requestable']) self.dstc2_acts = None if not domain: # Default to CamRest dimensions self.NStateFeatures = 56 # Default to CamRest actions self.dstc2_acts = [ 'repeat', 'canthelp', 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'welcomemsg', 'expl-conf', 'select', 'offer', 'reqalts', 'confirm-domain', 'confirm' ] else: # Try to identify number of state features if domain in ['SlotFilling', 'CamRest']: # Plato does not use action masks (rules to define which # actions are valid from each state) and so training can # be harder. This becomes easier if we have a smaller # action set. # Sub-case for CamRest if domain == 'CamRest': # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_sys = [ 'offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm' ] # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_usr = [ 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm' ] if self.agent_role == 'system': self.dstc2_acts = self.dstc2_acts_sys elif self.agent_role == 'user': self.dstc2_acts = self.dstc2_acts_usr self.NActions = \ len(self.dstc2_acts) + len(self.requestable_slots) if self.agent_role == 'system': self.NActions += len(self.system_requestable_slots) else: self.NActions += len(self.requestable_slots)
class QPolicy(dialogue_policy.DialoguePolicy): def __init__(self, args): """ Initialize parameters and internal structures :param args: the policy's arguments """ super(QPolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology else: raise ValueError('QPolicy dialogue policy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('QPolicy dialogue policy: No ontology ' 'provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database else: raise ValueError('QPolicy dialogue policy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('QPolicy dialogue policy: No database ' 'provided') domain = args['domain'] if 'domain' in args else None self.agent_id = args['agent_id'] if 'agent_id' in args else 0 self.agent_role = \ args['agent_role'] if 'agent_role' in args else 'system' self.alpha = args['alpha'] if 'alpha' in args else 0.2 self.gamma = args['gamma'] if 'gamma' in args else 0.95 self.epsilon = args['epsilon'] if 'epsilon' in args else 0.95 self.alpha_decay = \ args['alpha_decay'] if 'alpha_decay' in args else 0.995 self.epsilon_decay = \ args['epsilon_decay'] if 'epsilon_decay' in args else 0.9995 self.is_training = False self.IS_GREEDY_POLICY = True self.Q = {} self.pp = pprint.PrettyPrinter(width=160) # For debug! # System and user expert policies (optional) self.warmup_policy = None self.warmup_simulator = None if self.agent_role == 'system': # Put your system expert dialogue policy here self.warmup_policy = \ slot_filling_policy.HandcraftedPolicy({ 'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = \ dict( zip(['ontology', 'database'], [self.ontology, self.database])) # Put your user expert dialogue policy here self.warmup_simulator = AgendaBasedUS(usim_args) # Extract lists of slots that are frequently used self.informable_slots = \ deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = \ deepcopy(self.ontology.ontology['requestable']) self.system_requestable_slots = \ deepcopy(self.ontology.ontology['system_requestable']) self.dstc2_acts = None if not domain: # Default to CamRest dimensions self.NStateFeatures = 56 # Default to CamRest actions self.dstc2_acts = [ 'repeat', 'canthelp', 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'welcomemsg', 'expl-conf', 'select', 'offer', 'reqalts', 'confirm-domain', 'confirm' ] else: # Try to identify number of state features if domain in ['SlotFilling', 'CamRest']: # Plato does not use action masks (rules to define which # actions are valid from each state) and so training can # be harder. This becomes easier if we have a smaller # action set. # Sub-case for CamRest if domain == 'CamRest': # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_sys = [ 'offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm' ] # Does not include inform and request that are modelled # together with their arguments self.dstc2_acts_usr = [ 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm' ] if self.agent_role == 'system': self.dstc2_acts = self.dstc2_acts_sys elif self.agent_role == 'user': self.dstc2_acts = self.dstc2_acts_usr self.NActions = \ len(self.dstc2_acts) + len(self.requestable_slots) if self.agent_role == 'system': self.NActions += len(self.system_requestable_slots) else: self.NActions += len(self.requestable_slots) def initialize(self, args): """ Initialize internal parameters :return: Nothing """ if 'is_training' in args: self.is_training = bool(args['is_training']) if 'agent_role' in args: self.agent_role = args['agent_role'] def restart(self, args): """ Nothing to do here. :return: """ pass def next_action(self, state): """ Consults the dialogue policy to produce the agent's response :param state: the current dialogue state :return: a list of dialogue acts, representing the agent's response """ state_enc = self.encode_state(state) if state_enc not in self.Q or (self.is_training and random.random() < self.epsilon): if random.random() < 0.5: # During exploration we may want to follow another dialogue # policy, e.g. an expert dialogue policy. print('---: Selecting warmup action.') if self.agent_role == 'system': return self.warmup_policy.next_action(state) else: self.warmup_simulator.receive_input( state.user_acts, state.user_goal) return self.warmup_simulator.respond() else: # Return a random action print('---: Selecting random action') return self.decode_action( random.choice(range(0, self.NActions)), self.agent_role == 'system') if self.IS_GREEDY_POLICY: # Return action with maximum Q value from the given state sys_acts = self.decode_action( max(self.Q[state_enc], key=self.Q[state_enc].get), self.agent_role == 'system') else: sys_acts = self.decode_action( random.choices(range(0, self.NActions), self.Q[state_enc])[0], self.agent_role == 'system') return sys_acts def encode_state(self, state): """ Encodes the dialogue state into an index used to address the Q matrix. :param state: the state to encode :return: int - a unique state ID """ temp = [] temp += [int(b) for b in format(state.turn, '06b')] for value in state.slots_filled.values(): # This contains the requested slot temp.append(1) if value else temp.append(0) for slot in self.ontology.ontology['requestable']: temp.append(1) if slot == state.requested_slot else temp.append(0) temp.append(int(state.is_terminal_state)) # If the agent is a system, then this shows what the top db result is. # If the agent is a user, then this shows what information the # system has provided if state.item_in_focus: for slot in self.ontology.ontology['requestable']: if slot in state.item_in_focus and state.item_in_focus[slot]: temp.append(1) else: temp.append(0) else: temp += [0] * len(self.ontology.ontology['requestable']) if state.db_matches_ratio >= 0: temp += \ [int(b) for b in format(int(round(state.db_matches_ratio, 2) * 100), '07b')] else: # If the number is negative (should not happen in general) there # will be a minus sign temp += \ [int(b) for b in format(int(round(state.db_matches_ratio, 2) * 100), '07b')[1:]] temp.append(1) if state.system_made_offer else temp.append(0) if state.user_acts: temp += \ [int(b) for b in format(self.encode_action(state.user_acts, False), '05b')] else: temp += [0, 0, 0, 0, 0] if state.last_sys_acts: temp += \ [int(b) for b in format(self.encode_action([state.last_sys_acts[0]]), '04b')] else: temp += [0, 0, 0, 0] # If the agent plays the role of the user it needs access to its own # goal if state.user_goal: for c in self.ontology.ontology['informable']: if c in state.user_goal.constraints and \ state.user_goal.constraints[c].value: temp.append(1) else: temp.append(0) for r in self.ontology.ontology['requestable']: if r in state.user_goal.requests and \ state.user_goal.requests[r].value: temp.append(1) else: temp.append(0) else: # Just for symmetry, for all other roles append zeros temp += [0] * (len(self.ontology.ontology['informable']) + len(self.ontology.ontology['requestable'])) # Encode state state_enc = 0 for t in temp: state_enc = (state_enc << 1) | t return state_enc def encode_action(self, actions, system=True): """ Encode the action, given the role. Note that does not have to match the agent's role, as the agent may be encoding another agent's action (e.g. a system encoding the previous user act). :param actions: actions to be encoded :param system: whether the role whose action we are encoding is a 'system' :return: the encoded action """ # TODO: Handle multiple actions if not actions: print('WARNING: Supervised dialogue policy action encoding called ' 'with empty actions list (returning -1).') return -1 action = actions[0] slot = None if action.params and action.params[0].slot: slot = action.params[0].slot if system: if self.dstc2_acts_sys and action.intent in self.dstc2_acts_sys: return self.dstc2_acts_sys.index(action.intent) if slot: if action.intent == 'request' and slot in \ self.system_requestable_slots: return len(self.dstc2_acts_sys) + \ self.system_requestable_slots.index(slot) if action.intent == 'inform' and slot in \ self.requestable_slots: return len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ self.requestable_slots.index(slot) else: if self.dstc2_acts_usr and action.intent in self.dstc2_acts_usr: return self.dstc2_acts_usr.index(action.intent) if slot: if action.intent == 'request' and slot in \ self.requestable_slots: return len(self.dstc2_acts_usr) + \ self.requestable_slots.index(slot) if action.intent == 'inform' and slot in \ self.requestable_slots: return len(self.dstc2_acts_usr) + \ len(self.requestable_slots) + \ self.requestable_slots.index(slot) # Unable to encode action print('Q-Learning ({0}) dialogue policy action encoder warning: ' 'Selecting default action (unable to encode: {1})!'.format( self.agent_role, action)) return -1 def decode_action(self, action_enc, system=True): """ Decode the action, given the role. Note that does not have to match the agent's role, as the agent may be decoding another agent's action (e.g. a system decoding the previous user act). :param action_enc: action encoding to be decoded :param system: whether the role whose action we are decoding is a 'system' :return: the decoded action """ if system: if action_enc < len(self.dstc2_acts_sys): return [DialogueAct(self.dstc2_acts_sys[action_enc], [])] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.system_requestable_slots[ action_enc - len(self.dstc2_acts_sys)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_sys) + \ len(self.system_requestable_slots) + \ len(self.requestable_slots): index = \ action_enc - len(self.dstc2_acts_sys) - \ len(self.system_requestable_slots) return [ DialogueAct('inform', [ DialogueActItem(self.requestable_slots[index], Operator.EQ, '') ]) ] else: if action_enc < len(self.dstc2_acts_usr): return [DialogueAct(self.dstc2_acts_usr[action_enc], [])] if action_enc < len(self.dstc2_acts_usr) + \ len(self.requestable_slots): return [ DialogueAct('request', [ DialogueActItem( self.requestable_slots[action_enc - len(self.dstc2_acts_usr)], Operator.EQ, '') ]) ] if action_enc < len(self.dstc2_acts_usr) + \ 2 * len(self.requestable_slots): return [ DialogueAct('inform', [ DialogueActItem( self.requestable_slots[ action_enc - len(self.dstc2_acts_usr) - len(self.requestable_slots)], Operator.EQ, '') ]) ] def train(self, dialogues): """ Train the model using Q-learning. :param dialogues: a list dialogues, which is a list of dialogue turns (state, action, reward triplets). :return: """ for dialogue in dialogues: if len(dialogue) > 1: dialogue[-2]['reward'] = dialogue[-1]['reward'] for turn in dialogue: state_enc = self.encode_state(turn['state']) new_state_enc = self.encode_state(turn['new_state']) action_enc = self.encode_action(turn['action']) if action_enc < 0: continue if state_enc not in self.Q: self.Q[state_enc] = {} if action_enc not in self.Q[state_enc]: self.Q[state_enc][action_enc] = 0 max_q = 0 if new_state_enc in self.Q: max_q = max(self.Q[new_state_enc].values()) self.Q[state_enc][action_enc] += \ self.alpha * (turn['reward'] + self.gamma * max_q - self.Q[state_enc][action_enc]) # Decay learning rate if self.alpha > 0.001: self.alpha *= self.alpha_decay # Decay exploration rate if self.epsilon > 0.05: self.epsilon *= self.epsilon_decay print('Q-Learning: [alpha: {0}, epsilon: {1}]'.format( self.alpha, self.epsilon)) def save(self, path=None): """ Save the Q learning dialogue policy model :param path: the path to save the model to :return: nothing """ # Don't save if not training if not self.is_training: return if not path: path = 'models/policies/q_policy.pkl' print('No dialogue policy file name provided. Using default: {0}'. format(path)) # If the directory does not exist, create it if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path), exist_ok=True) obj = { 'Q': self.Q, 'a': self.alpha, 'e': self.epsilon, 'g': self.gamma } with open(path, 'wb') as file: pickle.dump(obj, file, pickle.HIGHEST_PROTOCOL) def load(self, path=None): """ Loads the Q learning dialogue policy model :param path: the path to load the model from :return: nothing """ if not path: print('No dialogue policy loaded.') return if isinstance(path, str): if os.path.isfile(path): with open(path, 'rb') as file: obj = pickle.load(file) if 'Q' in obj: self.Q = obj['Q'] if 'a' in obj: self.alpha = obj['a'] if 'e' in obj: self.epsilon = obj['e'] if 'g' in obj: self.gamma = obj['g'] print('Q dialogue policy loaded from {0}.'.format(path)) else: print('Warning! Q dialogue policy file %s not found' % path) else: print('Warning! Unacceptable value for Q dialogue policy file ' 'name: %s ' % path)