def computeAndShowFilters(datapmatfile, img_height, img_width, filtertype='PCA', lambd=1e-6, nu=0, centered=True, displaytranspose=False): """ Input is considered to be the first img_height x img_width columns of datapmatfile. centered indicates whether we compte centered covariance (default) or uncentered covariance. Covariance matrix will get lambd*I added to its diagonal, and its off-diagonal terms multiplied by (1-nu). Filtertype can be 'PCA' or 'denoising' or 'denoising_eig'. Original version of linear denoising with zeroing noise (with probability of zeroing equal to nu) is obtained for centered=False and lambda=0 """ data = load_pmat_as_array(datapmatfile) inputs = data[:, 0:img_height * img_width] C = mycov(inputs, centered) if (filtertype == "PCA"): filters = computePCAFiltersFromCovariance(C, lambd, nu) elif (filtertype == "denoising"): filters = computeDenoisingFiltersFromCovariance(C, lambd, nu) elif (filtertype == "denoising_eig"): filters = computeDenoisingEigenFiltersFromCovariance(C, lambd, nu) else: raise ValueError("Invalid filtertype " + filtertype) if displaytranspose: filters = filters.T showRowsAsImages(filters, img_height, img_width, figtitle="Filters")
def computeAndShowFilters(datapmatfile, img_height, img_width, filtertype='PCA', lambd=1e-6, nu=0, centered=True, displaytranspose=False): """ Input is considered to be the first img_height x img_width columns of datapmatfile. centered indicates whether we compte centered covariance (default) or uncentered covariance. Covariance matrix will get lambd*I added to its diagonal, and its off-diagonal terms multiplied by (1-nu). Filtertype can be 'PCA' or 'denoising' or 'denoising_eig'. Original version of linear denoising with zeroing noise (with probability of zeroing equal to nu) is obtained for centered=False and lambda=0 """ data = load_pmat_as_array(datapmatfile) inputs = data[:,0:img_height*img_width] C = mycov(inputs, centered) if(filtertype=="PCA"): filters = computePCAFiltersFromCovariance(C, lambd, nu) elif(filtertype=="denoising"): filters = computeDenoisingFiltersFromCovariance(C, lambd, nu) elif(filtertype=="denoising_eig"): filters = computeDenoisingEigenFiltersFromCovariance(C, lambd, nu) else: raise ValueError("Invalid filtertype "+filtertype) if displaytranspose: filters = filters.T showRowsAsImages(filters, img_height, img_width, figtitle="Filters")
showBihistRows(m2, nbins, nbins, nrows=10, ncols=20, startidx=0, figtitle="", luminance_scale_mode=1, vmin=-1., vmax=1., transpose_img=False) def print_usage_and_exit(): print "Usage : displaybihist.py bihists.pmat" print " will graphically display the bivariate histograms in the pmat." sys.exit() ############ ### main ### ############ if len(sys.argv) < 2: print_usage_and_exit() pmatfname = sys.argv[1] m = load_pmat_as_array(pmatfname) display_bihists(m)
if i==j: bihist.fill(1.) else: bihist[:,:] = bihist-outer(hists[i],hists[j]) showBihistRows(m2, nbins, nbins, nrows = 10, ncols = 20, startidx = 0, figtitle="", luminance_scale_mode=1, vmin = -1., vmax = 1., transpose_img=False) def print_usage_and_exit(): print "Usage : displaybihist.py bihists.pmat" print " will graphically display the bivariate histograms in the pmat." sys.exit() ############ ### main ### ############ if len(sys.argv)<2: print_usage_and_exit() pmatfname = sys.argv[1] m = load_pmat_as_array(pmatfname) display_bihists(m)