axis=1) sims.append(tmp) return pandas.concat(sims, keys=range(len(sims))), len(sims) # read the data files def read_data(files): data = [] for infile in files: with open(infile, 'r') as file: tmp = pandas.read_csv(file, delimiter=' ', header=0, engine='python') tmp = tmp.set_index('time', drop=False).rename_axis(None, axis=0).drop('time', axis=1) data.append(tmp) return pandas.concat(data, keys=range(len(data))), len(data) if __name__ == '__main__': args = argsparser(**{'simulator': 'KaSim v3.5'}) data, len_data = read_data(args.data) # read data files sims, len_sims = read_sims(args.sims) # read sims files # calculate fitness doerror(args, data, len_data, sims, len_sims)
return pandas.concat(sims, keys=range(len(sims))), len(sims) # read the data files def read_data(files): data = [] for infile in files: with open(infile, 'r') as file: tmp = io.StringIO( file.read() [1:]) # remove the # at the beginning of simulations files tmp = pandas.read_csv(tmp, delim_whitespace=True, header=0, engine='python') tmp = tmp.set_index('time', drop=False).rename_axis(None, axis=0).drop('time', axis=1) data.append(tmp) return pandas.concat(data, keys=range(len(data))), len(data) if __name__ == '__main__': args = argsparser(**{'simulator': 'BNG2'}) data, len_data = read_data(args.data) # read data files sims, len_sims = read_sims(args.sims) # read sims files # calculate fitness doerror(args, data, len_data, sims, len_sims)
sims[ind].set_index('compartment', append=True, inplace=True) sims[ind] = sims[ind].reorder_levels(['compartment', 'time']) return pandas.concat(sims, keys=range(len(sims))), len(sims) # read the data files def read_data(files): data = [] for ind, infile in enumerate(files): with open(infile, 'r') as input: data.append( pandas.read_csv(input, delimiter=' ', engine='python').set_index('time')) # mark each data file with the corresponding compartment name = list(data[ind].columns)[0] data[ind]['compartment'] = name data[ind].set_index('compartment', append=True, inplace=True) data[ind] = data[ind].reorder_levels(['compartment', 'time']) return pandas.concat(data, keys=range(len(data))), len(data) if __name__ == '__main__': args = argsparser(**{'simulator': 'PISKaS v1.3'}) data, len_data = read_data(args.data) # read data files sims, len_sims = read_sims(args.sims) # read sims files # calculate fitness doerror(args, data, len_data, sims, len_sims)
axis=1) sims.append(tmp) return pandas.concat(sims, keys=range(len(sims))), len(sims) # read the data files def read_data(files): data = [] for infile in files: with open(infile, 'r') as file: tmp = pandas.read_csv(file, delimiter=', ', header=0, engine='python') tmp = tmp.set_index('time', drop=False).rename_axis(None, axis=0).drop('time', axis=1) data.append(tmp) return pandas.concat(data, keys=range(len(data))), len(data) if __name__ == '__main__': args = argsparser(**{'simulator': 'NFsim'}) data, len_data = read_data(args.data) # read data files sims, len_sims = read_sims(args.sims) # read sims files # calculate fitness doerror(args, data, len_data, sims, len_sims)
# read the data files def read_data(files): data = [] for infile in files: with open(infile, 'r') as file: tmp = pandas.read_csv(file, delimiter='\t', header=0, engine='python') tmp = tmp.set_index('time', drop=False).rename_axis(None, axis=0).drop('time', axis=1) data.append(tmp) return pandas.concat(data, keys=range(len(data))), len(data) if __name__ == '__main__': args = argsparser(**{'simulator': 'Tellurium v2.1.5'}) if args.lower is not None: args.lower, _ = read_data(args.lower) # read lower limit if set if args.upper is not None: args.upper, _ = read_data(args.upper) # read upper limit if set data, len_data = read_data(args.data) # read data files sims, len_sims = read_sims(args.sims) # read sims files doerror(args, data, len_data, sims, len_sims) # calculate fitness