예제 #1
0
def test_stft_extractor():
    stim = AudioStim(join(AUDIO_DIR, 'barber.wav'), onset=4.2)
    ext = STFTAudioExtractor(frame_size=1., spectrogram=False,
                             freq_bins=[(100, 300), (300, 3000), (3000, 20000)])
    result = ext.transform(stim)
    df = result.to_df()
    assert df.shape == (557, 5)
    assert df['onset'][0] == 4.2
예제 #2
0
def test_stft_extractor():
    audio_dir = join(get_test_data_path(), 'audio')
    stim = AudioStim(join(audio_dir, 'barber.wav'))
    ext = STFTAudioExtractor(frame_size=1., spectrogram=False,
                        freq_bins=[(100, 300), (300, 3000), (3000, 20000)])
    result = ext.transform(stim)
    df = result.to_df()
    assert df.shape == (557, 5)
예제 #3
0
def test_convert_to_long():
    audio_dir = join(get_test_data_path(), 'audio')
    stim = AudioStim(join(audio_dir, 'barber.wav'))
    ext = STFTAudioExtractor(frame_size=1., spectrogram=False,
                        freq_bins=[(100, 300), (300, 3000), (3000, 20000)])
    timeline = ext.transform(stim)
    long_timeline = to_long_format(timeline)
    assert long_timeline.shape == (timeline.to_df().shape[0] * 3, 4)
    assert 'feature' in long_timeline.columns
    assert 'value' in long_timeline.columns
    assert '100_300' not in long_timeline.columns
    timeline = ExtractorResult.merge_features([timeline])
    long_timeline = to_long_format(timeline)
    assert 'feature' in long_timeline.columns
    assert 'extractor' in long_timeline.columns
    assert '100_300' not in long_timeline.columns
예제 #4
0
# peep_spectrum.py

from pliers.extractors import STFTAudioExtractor
import matplotlib

snd_0 = 'snd/peep-I-neu-chk.wav'
snd_1 = 'snd/peep-I-hap-tlk.mp3'
snds = [snd_0, snd_1]

# result will generate spectrogram
ext = STFTAudioExtractor(freq_bins=10, spectrogram=True)

result = ext.transform(snds)

print(result[0])
print(result[1])