def transform(self, stims, *args, **kwargs): if isinstance(stims, string_types): stims = load_stims(stims) # If stims is a CompoundStim and the Transformer is expecting a single # input type, extract all matching stims if isinstance(stims, CompoundStim) and not isinstance( self._input_type, tuple): stims = stims.get_stim(self._input_type, return_all=True) if not stims: raise ValueError("No stims of class %s found in the provided" "CompoundStim instance." % self._input_type) # If stims is an iterable, naively loop over elements, removing # invalid results if needed if isiterable(stims): iters = self._iterate(stims, *args, **kwargs) if config.drop_bad_extractor_results: iters = (i for i in iters if i is not None) return progress_bar_wrapper(iters, desc='Stim') # Validate stim, and then either pass it directly to the Transformer # or, if a conversion occurred, recurse. else: validated_stim = self._validate(stims) # If a conversion occurred during validation, we recurse if stims is not validated_stim: return self.transform(validated_stim, *args, **kwargs) else: result = self._transform(validated_stim, *args, **kwargs) result = _log_transformation(validated_stim, result, self) if isgenerator(result): result = list(result) return result
def transform(self, stims, validation='strict', *args, **kwargs): ''' Executes the transformation on the passed stim(s). Args: stims (str, Stim, list): One or more stimuli to process. Must be one of: - A string giving the path to a file that can be read in as a Stim (e.g., a .txt file, .jpg image, etc.) - A Stim instance of any type. - An iterable of stims, where each element is either a string or a Stim. validation (str): String specifying how validation errors should be handled. Must be one of: - 'strict': Raise an exception on any validation error - 'warn': Issue a warning for all validation errors - 'loose': Silently ignore all validation errors args: Optional positional arguments to pass onto the internal _transform call. kwargs: Optional positional arguments to pass onto the internal _transform call. ''' if isinstance(stims, str): stims = load_stims(stims) # If stims is a CompoundStim and the Transformer is expecting a single # input type, extract all matching stims if isinstance(stims, CompoundStim) and not isinstance( self._input_type, tuple): stims = stims.get_stim(self._input_type, return_all=True) if not stims: raise ValueError("No stims of class %s found in the provided" "CompoundStim instance." % self._input_type) # If stims is an iterable, naively loop over elements, removing # invalid results if needed if isiterable(stims): iters = self._iterate(stims, validation=validation, *args, **kwargs) if config.get_option('drop_bad_extractor_results'): iters = (i for i in iters if i is not None) iters = progress_bar_wrapper(iters, desc='Stim') return set_iterable_type(iters) # Validate stim, and then either pass it directly to the Transformer # or, if a conversion occurred, recurse. else: try: validated_stim = self._validate(stims) except TypeError as err: if validation == 'strict': raise err elif validation == 'warn': logging.warning(str(err)) return elif validation == 'loose': return # If a conversion occurred during validation, we recurse if stims is not validated_stim: return self.transform(validated_stim, *args, **kwargs) else: result = self._transform(validated_stim, *args, **kwargs) result = _log_transformation(validated_stim, result, self) if isgenerator(result): result = list(result) self._propagate_context(validated_stim, result) return result