예제 #1
0
def check_boxes(envir):
    boxes = envir.boxes
    for box_i in boxes:
        for box_j in boxes:
            if (box_i != box_j):
                plot.plot_box([box_i, box_j])
                box_coll = (box_i, box_j, box_i(box_j), box_j(box_i))
                print("%s;%s;%d,%d" % box_coll)
예제 #2
0
            if str(feat_val)[-3:] == "inf" or str(feat_val) == "nan"  or (abs(feat_val)>18 and i==1)  :
                print feat_val,label
                continue
            
            pool_feature.append(feat_val)
        
        #apply pooling operator here
        pool_feature = np.std(pool_feature)
        if label == -1:
            class_1_feature.append(pool_feature )
        elif label == 1:
            class1_feature.append(pool_feature )
            
    axis = [0, 110, min(min(class_1_feature),min(class1_feature))-1, max(max(class_1_feature),max(class1_feature))+1]
            
    print len(class_1_feature)
    print len(class1_feature)
    
#     plot_scatter(class_1_feature, "class-1-"+feat_id_to_name[i],axis)
#     plot_scatter(class1_feature, "class1-"+feat_id_to_name[i],axis)
#     
#     plot_histogram(class_1_feature, "class-1-"+feat_id_to_name[i])
#     plot_histogram(class1_feature, "class1-"+feat_id_to_name[i])
     
    data_to_plot = [class1_feature,class_1_feature]
    plot_box(data_to_plot, "std-"+feat_id_to_name[i],["class 1","class -1"])

#     plot_xy_histogram(class1_feature,class_1_feature, feat_id_to_name[i],["class1-","class-1-"])
    
    
    
예제 #3
0
            class_positive_feature.append(np.std(pool_feature))
        else:
            class_neutral_feature.append(np.std(pool_feature))
        result.append(np.std(pool_feature))
    results.append(result)
    axis = [
        0, 100000,
        min(min(class_negative_feature), min(class_positive_feature)) - 1,
        max(max(class_negative_feature), max(class_positive_feature)) + 1
    ]

    #     plot_scatter(class_1_feature, "class-1-"+feat_id_to_name[i],axis)
    #     plot_scatter(class1_feature, "class1-"+feat_id_to_name[i],axis)
    #
    #     plot_histogram(class_1_feature, "class-1-"+feat_id_to_name[i])
    #     plot_histogram(class1_feature, "class1-"+feat_id_to_name[i])

    data_to_plot = [
        class_positive_feature, class_negative_feature, class_neutral_feature
    ]
    plot_box(data_to_plot, "OKAO", feature_mapping[i],
             ["class 1", "class -1", "class 0"])
    #plot_xy_histogram(class1_feature, class_1_feature, feat_id_to_name[i], ["image/class1-", "image/class-1-"])
    labels.append("OKAO-" + feature_mapping[i])
results = list(map(list, zip(*results)))
results = [[]] + results
results[0] = labels
with open("output-OKAO.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(results)
예제 #4
0
            if str(feat_val)[-3:] == "inf" or str(feat_val) == "nan" or (
                    abs(feat_val) > 18 and i == 1):
                print feat_val, label
                continue
            pool_feature.append(feat_val)
        if label == -1:
            class_1_feature.append(np.std(pool_feature))
        elif label == 1:
            class1_feature.append(np.std(pool_feature))

    axis = [
        0, 100000,
        min(min(class_1_feature), min(class1_feature)) - 1,
        max(max(class_1_feature), max(class1_feature)) + 1
    ]

    print len(class_1_feature)
    print len(class1_feature)

    #     plot_scatter(class_1_feature, "class-1-"+feat_id_to_name[i],axis)
    #     plot_scatter(class1_feature, "class1-"+feat_id_to_name[i],axis)
    #
    #     plot_histogram(class_1_feature, "class-1-"+feat_id_to_name[i])
    #     plot_histogram(class1_feature, "class1-"+feat_id_to_name[i])

    data_to_plot = [class1_feature, class_1_feature]
    plot_box(data_to_plot, "ACOUSTIC", feat_id_to_name[i],
             ["class 1", "class -1"])
#    plot_xy_histogram(class1_feature,class_1_feature, feat_id_to_name[i],["class1-","class-1-"])
예제 #5
0
    #         continue

    if label == -1:
        class_1_feature += feat_val
    elif label == 1:
        class1_feature += feat_val
    elif label == 0:
        class0_feature += feat_val
    anova += feat_val
    labels.append(label)
#word cloud 2
# word_cloud(' '.join(class_1_feature), "class_-1")
# word_cloud(' '.join(class1_feature), "class_1")

print len(class1_feature), len(
    class_1_feature)  #, "\n", class1_feature, "\n", class_1_feature
print "Avg", sum(class1_feature) * 1.0 / len(class1_feature), sum(
    class_1_feature) * 1.0 / len(class_1_feature)
print "Max", max(class1_feature), max(class_1_feature)
print "index", class1_feature.index(
    max(class1_feature)), class_1_feature.index(max(class_1_feature))
print "Std", np.std(class1_feature), np.std(class_1_feature)

data_to_plot = [class1_feature, class_1_feature, class0_feature]
plot_box(data_to_plot, "std-elongation", ["class 1", "class -1", "class 0"])
#
# plot_xy_histogram(class1_feature,class_1_feature, "std-elongation",["class1-","class-1-"])

print anova
print labels