예제 #1
0
def parse2submatrix(org_data, xs, ys, zs, savedir, 
	pid, task, init_layer, final_layer, is_verbose):

	xmin, xmax = np.min(xs), np.max(xs)
	ymin, ymax = np.min(ys), np.max(ys)
	zmin, zmax = np.min(zs), np.max(zs)

	# box = np.full([50, 50, 50], np.nan) # [int(xmax-xmin), int(ymax - ymin), int(zmax - zmin)]
	size_x = xmax - xmin
	size_y = ymax - ymin
	size_z = zmax - zmin

	# print (org_data.shape)
	xmin_, xmax_, ymin_, ymax_, zmin_, zmax_ = extend_box(
		xmin, xmax, ymin, ymax, zmin, zmax, 
		delta=2, init_layer=init_layer, final_layer=final_layer)

	box = org_data[zmin_:zmax_, ymin_:ymax_, xmin_:xmax_]# [xmin:xmax, ymin:ymax, zmin:zmax]
	if is_verbose:
		print ("box.shape", box.shape)
		print (xmin_, xmax_, ymin_, ymax_, zmin_, zmax_)

	z_layers = box.shape[0]
	if z_layers != 0:
		vmin = np.min(box)
		vmax = np.max(box)

		shape = "{0}-{1}-{2}".format(box.shape[0], box.shape[1], box.shape[2])
		for ith in range(z_layers):
			data = box[ith]
			row_id = "/particle_{0}_{1}/".format(pid, shape)+"/r"+"{0:04}".format(init_layer+zmin_+ith)+"_xrange_{0}-{1}-_yrange_{2}-{3}".format(xmin, xmax, ymin, ymax)
			file = savedir+ row_id +".txt"
			save_layer2text(data, file=file)

			if is_verbose:
				figfile = file.replace(text_dir, fig_dir).replace(".txt", ".pdf")
				plot_density(values=data, save_at=figfile,  cmap_name="jet", 
						title=row_id, vmin=vmin, vmax=vmax, is_save2input=None)
예제 #2
0
def txt2png(jobdir, init_layer, final_layer):
	bkg_thresh = MaxBkg / 20

	if (init_layer is not None) and (final_layer is not None):
		files = [InputDir+"/txt/"+jobdir+"/r"+"{0:04}".format(k)+".txt" for k in range(init_layer, final_layer+1)]
	else:
		print(InputDir+"/txt/"+jobdir)
		files = get_subdirs(InputDir+"/txt/"+jobdir)
		print(files)

	for f in files:
		basename = get_basename(filename=f)
		basename = basename[:basename.find(".")]
		this_layer = load_1layer(file=f)
		save_at = InputDir+"/label/"+jobdir+"/"+basename+".png"
		X_lbl = np.where(this_layer > bkg_thresh, 1.0, 0.0)
		print (X_lbl)
		plot_density(values=X_lbl, save_at=save_at,
			cmap_name="Greys", 
			title=None, vmin=None, vmax=None, is_save2input=None)

		save_at = InputDir+"/label_txt/"+jobdir+"/"+basename+".txt"
		
		save_layer2text(X_lbl, file=save_at)
예제 #3
0
파일: task2.py 프로젝트: ClarkDinh/PtNafion
def feature(input_direction, output_direction_feature, output_direction_image,
            diff):
    for file_init in os.listdir(input_direction + diff):
        print(str(file_init.replace(".txt", "")))
        if not file_init.endswith(".DS_Store"):
            matrix = np.loadtxt(
                str(input_direction + diff + "/" + str(file_init)))
            print(matrix)
            matrix = np.where(matrix > 0, 1, matrix)
            matrix = np.where(matrix == 0, 0, matrix)
            matrix = np.where(matrix < 0, -1, matrix)
            print(matrix)

            np.savetxt(output_direction_feature + diff + "/" + str(file_init),
                       matrix,
                       delimiter="  ")

            plot_density(matrix,
                         output_direction_image + diff + "/" +
                         str(file_init.replace(".txt", "")),
                         str(file_init.replace(".txt", "")),
                         "bwr",
                         vmin=None,
                         vmax=None)
예제 #4
0
def stack_slices(input_folder, output_folder, output_slice_3D):
    folders = list_folders(input_folder)
    # Traverse all particles
    for particle in folders:
        print(basename(particle))
        makedirs("{0}/{1}".format(output_folder, basename(particle)))
        all_slices = []
        # print(particle)
        slices = sorted(glob.glob("{0}/*.txt".format(particle)))
        # Traverse all slices of a particle.
        for slice in slices:
            array = np.loadtxt(slice)
            all_slices.append(array)
        slices_3D = np.stack(all_slices, axis=0)
        # print(slices_3D)
        # print("Slice_3D shape:",slices_3D.shape)
        positions = np.where(slices_3D[:, :, :] == 1)
        positions = np.array(positions)
        #print(positions)
        # print("Bulk positions shape:",positions.shape)
        depth, rows, cols = slices_3D.shape
        # print(depth,rows, cols)
        for i in range(0, positions.shape[1]):
            d = positions[0][i]
            n = positions[1][i]
            m = positions[2][i]
            d_front = 0
            d_back = 0
            n_above = 0
            n_bottom = 0
            m_left = 0
            m_right = 0

            #For depth
            if d > 0:
                d_front = d - 1
                d_back = d + 1
            if d == 0:  #If the pixel lays on the first slice of the particle
                d_front = d
                d_back = d + 1
            if d == depth - 1:  #If the pixel lays on the last slice of the particle
                d_front = d - 1
                d_back = d

            #For height
            if n > 0:
                n_above = n - 1
                n_bottom = n + 1
            if n == 0:  #If the pixel lays on the top margin of the slice
                n_above = n
                n_bottom = n + 1
            if n == rows - 1:  #If the pixel lays on the bottom margin of the slice
                n_above = n - 1
                n_bottom = n
            # For width
            if m > 0:
                m_left = m - 1
                m_right = m + 1
            if m == 0:  #If the pixel lays on the left margin of the slice
                m_left = m
                m_right = m + 1
            if m == cols - 1:  #If the pixel lays on the right margin of the slice
                m_left = m - 1
                m_right = m

            cubic = slices_3D[d_front:d_back + 1, n_above:n_bottom + 1,
                              m_left:m_right + 1]
            # print(d_front,d_back,n_above,n_bottom,m_left,m_right)
            # print(cubic)
            # print(cubic.shape)
            if -1 in cubic:
                slices_3D[d, n, m] = 0
        # Write slices_3D into txt file
        save_txt_3D = "{0}/{1}.txt".format(output_slice_3D, basename(particle))
        np.savetxt(save_txt_3D, slices_3D.ravel())

        if is_plot:
            for j in range(0, depth):
                slice_2D = slices_3D[j, :, :]
                # save_txt_2D = "{0}/{1}/{2}".format(output_folder,basename(particle),basename(slices[j]))
                # np.savetxt(save_txt_2D, slice_2D)
                img_name = basename(slices[j])
                img_name = img_name.replace(".txt", "")
                save_img = "{0}/{1}/{2}".format(output_folder,
                                                basename(particle), img_name)
                # plot_density(slice_2D, save_img + ".pdf", cmap_name = "bwr", title=img_name, vmin=-1, vmax=1, is_save2input=None)
                plot_density(slice_2D,
                             save_img + ".jpg",
                             cmap_name="bwr",
                             title=img_name,
                             vmin=-1,
                             vmax=1,
                             is_save2input=None)
def main():

    parameters = dict()
    read_parameters_file(parameters)
    check_parameters_consistency(parameters)
    print_parameters(parameters)

    # gas density field:
    density = Field(field="rho", parameters=parameters)

    # number of grid cells in the radial and azimuthal directions
    nrad = density.nrad
    ncol = density.ncol
    nsec = density.nsec

    # volume of each grid cell (code units)
    # calculate_volume(density)

    volume = np.zeros((nsec, ncol, nrad))
    for i in range(nsec):
        for j in range(ncol):
            for k in range(nrad):
                volume[i, j,
                       k] = (density.rmed[k]**2 * np.sin(density.tmed[j]) *
                             density.dr[k] * density.dth[j] * density.dp[i])

    # Mass of gas in units of the star's mass
    Mgas = np.sum(density.data * volume)
    print("Mgas / Mstar= " + str(Mgas) + " and Mgas [kg] = " +
          str(Mgas * density.cumass))

    # Allocate arrays
    nbin = parameters["nbin"]
    # bins = np.asarray([0.0001, 0.001, 0.01, 0.1, 0.3, 1, 3, 10, 100, 1000, 3000])
    bins = np.asarray([0.0001, 0.001, 0.01, 0.1, 0.2])
    particles_per_bin_per_cell = np.zeros(nbin * nsec * ncol * nrad)
    dust_cube = np.zeros((nbin, nsec, ncol, nrad))
    particles_per_bin = np.zeros(nbin)
    tstop_per_bin = np.zeros(nbin)

    # =========================
    # Compute dust mass volume density for each size bin
    # =========================
    if (parameters["RTdust_or_gas"] == "dust"
            and parameters["recalc_density"] == "Yes"
            and parameters["polarized_scat"] == "No"):
        print("--------- computing dust mass volume density ----------")

        particle_data = Particles(ns=parameters["particle_file"],
                                  directory=parameters["dir"])
        populate_dust_bins(
            density,
            particle_data,
            nbin,
            bins,
            particles_per_bin_per_cell,
            particles_per_bin,
            tstop_per_bin,
        )
        dust_cube = particles_per_bin_per_cell.reshape(
            (nbin, density.nsec, density.ncol, density.nrad))
        frac = np.zeros(nbin)
        buf = 0.0
        # finally compute dust surface density for each size bin
        for ibin in range(nbin):
            # fraction of dust mass in current size bin 'ibin', easy to check numerically that sum_frac = 1
            frac[ibin] = (pow(bins[ibin + 1], (4.0 - parameters["pindex"])) -
                          pow(bins[ibin], (4.0 - parameters["pindex"]))) / (
                              pow(parameters["amax"],
                                  (4.0 - parameters["pindex"])) -
                              pow(parameters["amin"],
                                  (4.0 - parameters["pindex"])))
            # total mass of dust particles in current size bin 'ibin'
            M_i_dust = parameters["ratio"] * Mgas * frac[ibin]
            buf += M_i_dust
            print("Dust mass [in units of Mstar] in species ", ibin, " = ",
                  M_i_dust)
            # dustcube, which contained N_i(r,phi), now contains sigma_i_dust (r,phi)
            dust_cube[
                ibin, :, :, :] *= M_i_dust / volume / particles_per_bin[ibin]
            # conversion in g/cm^2
            # dimensions: nbin, nrad, nsec
            dust_cube[ibin, :, :, :] *= (density.cumass * 1e3) / (
                (density.culength * 1e2)**2.0)

        # Overwrite first bin (ibin = 0) to model extra bin with small dust tightly coupled to the gas
        if parameters["bin_small_dust"] == "Yes":
            frac[0] *= 5e3
            print("!!!!!!!!!!!!!!!!!!!!!!!!!!!")
            print(
                "Bin with index 0 changed to include arbitrarilly small dust tightly coupled to the gas"
            )
            print("Mass fraction of bin 0 changed to: ", str(frac[0]))
            print("!!!!!!!!!!!!!!!!!!!!!!!!!!!")
            # radial index corresponding to 0.3"
            imin = np.argmin(np.abs(density.rmed - 1.4))
            # radial index corresponding to 0.6"
            imax = np.argmin(np.abs(density.rmed - 2.8))
            dust_cube[0, :, :, imin:imax] = (density.data[:, :, imin:imax] *
                                             parameters["ratio"] * frac[0] *
                                             (density.cumass * 1e3) /
                                             ((density.culength * 1e2)**2.0))

        print(
            "Total dust mass [g] = ",
            np.sum(dust_cube[:, :, :, :] * volume *
                   (density.culength * 1e2)**2.0),
        )
        print(
            "Total dust mass [Mgas] = ",
            np.sum(dust_cube[:, :, :, :] * volume *
                   (density.culength * 1e2)**2.0) /
            (Mgas * density.cumass * 1e3),
        )
        print(
            "Total dust mass [Mstar] = ",
            np.sum(dust_cube[:, :, :, :] * volume *
                   (density.culength * 1e2)**2.0) / (density.cumass * 1e3),
        )

        # Total dust surface density
        dust_surface_density = np.sum(dust_cube, axis=0)
        print("Maximum dust surface density [in g/cm^2] is ",
              dust_surface_density.max())

        DUSTOUT = open("dust_density.inp", "w")
        DUSTOUT.write("1 \n")  # iformat
        DUSTOUT.write(str(nrad * nsec * ncol) + " \n")  # n cells
        DUSTOUT.write(str(int(nbin)) + " \n")  # nbin size bins

        rhodustcube = np.zeros((nbin, nsec, ncol, nrad))

        # dust aspect ratio as function of ibin and r (or actually, R, cylindrical radius)
        hd = np.zeros((nbin, nrad))

        # gus aspect ratio
        hgas = np.zeros(nrad)
        for irad in range(nrad):
            hgas[irad] = (density.rmed[irad] * np.cos(density.tmed[:]) *
                          density.data[0, :, irad]).sum(
                              axis=0) / (density.data[0, :, irad]).sum(axis=0)

        for ibin in range(nbin):
            if parameters["polarized_scat"] == "No":
                for irad in range(nrad):
                    hd[ibin, irad] = hgas[irad] / np.sqrt(
                        1.0 +
                        tstop_per_bin[ibin] / parameters["alphaviscosity"] *
                        (1.0 + 2.0 * tstop_per_bin[ibin]) /
                        (1.0 + tstop_per_bin[ibin]))
            else:
                print(
                    "Set of initial conditions not implemented for pluto yet. Only parameters['polarized_scat'] == 'No'"
                )
                sys.exit("I must exit!")

        # work out exponential and normalization factors exp(-z^2 / 2H_d^2)
        # with z = r cos(theta) and H_d = h_d x R = h_d x r sin(theta)
        # r = spherical radius, R = cylindrical radius
        rho_dust_cube = dust_cube
        rho_dust_cube = np.nan_to_num(rho_dust_cube)

        # for plotting purposes
        axirhodustcube = np.sum(rho_dust_cube,
                                axis=3) / nsec  # ncol, nbin, nrad

        # Renormalize dust's mass volume density such that the sum over the 3D grid's volume of
        # the dust's mass volume density x the volume of each grid cell does give us the right
        # total dust mass, which equals ratio x Mgas.
        rhofield = np.sum(rho_dust_cube, axis=0)  # sum over dust bins

        Cedge, Aedge, Redge = np.meshgrid(
            density.tedge, density.pedge,
            density.redge)  # ncol+1, nrad+1, Nsec+1

        r2 = Redge * Redge
        jacob = r2[:-1, :-1, :-1] * np.sin(Cedge[:-1, :-1, :-1])
        dphi = Aedge[1:, :-1, :-1] - Aedge[:-1, :-1, :-1]  # same as 2pi/nsec
        dr = Redge[:-1, :-1, 1:] - Redge[:-1, :-1, :-1]  # same as Rsup-Rinf
        dtheta = Cedge[:-1, 1:, :-1] - Cedge[:-1, :-1, :-1]
        # volume of a cell in cm^3
        vol = (jacob * dr * dphi * dtheta * ((density.culength * 1e2)**3)
               )  # ncol, nrad, Nsec

        total_mass = np.sum(rhofield * vol)

        normalization_factor = (parameters["ratio"] * Mgas *
                                (density.cumass * 1e3) / total_mass)
        rho_dust_cube = rho_dust_cube * normalization_factor
        print(
            "total dust mass after vertical expansion [g] = ",
            np.sum(np.sum(rho_dust_cube, axis=0) * vol),
            " as normalization factor = ",
            normalization_factor,
        )

        # write mass volume densities for all size bins
        for ibin in range(nbin):
            print("dust species in bin", ibin, "out of ", nbin - 1)
            for k in range(nsec):
                for j in range(ncol):
                    for i in range(nrad):
                        DUSTOUT.write(
                            str(rho_dust_cube[ibin, k, j, i]) + " \n")

        # print max of dust's mass volume density at each colatitude
        for j in range(ncol):
            print(
                "max(rho_dustcube) [g cm-3] for colatitude index j = ",
                j,
                " = ",
                rho_dust_cube[:, :, j, :].max(),
            )

        DUSTOUT.close()

        # plot azimuthally-averaged density vs. radius and colatitude
        if parameters["plot_density"] == "Yes":
            plot_density(nbin, nsec, ncol, nrad, density, rho_dust_cube)

        # free RAM memory
        del rho_dust_cube, dust_cube, particles_per_bin_per_cell

    elif parameters["RTdust_or_gas"] == "gas":
        print(
            "Set of initial conditions not implemented for pluto yet. Only parameters['RTdust_or_gas'] == 'dust'"
        )
        sys.exit("I must exit!")
    elif parameters["polarized_scat"] == "Yes":
        print(
            "Set of initial conditions not implemented for pluto yet. Only parameters['polarized_scat'] == 'No'"
        )
        sys.exit("I must exit!")
    else:
        print(
            "--------- I did not compute dust densities (recalc_density = No in params.dat file) ----------"
        )

    # =========================
    # Compute dust opacities
    # =========================
    if parameters["RTdust_or_gas"] == "dust" and parameters[
            "recalc_opac"] == "Yes":
        print("--------- computing dust opacities ----------")

        # Calculation of opacities uses the python scripts makedustopac.py and bhmie.py
        # which were written by C. Dullemond, based on the original code by Bohren & Huffman.

        logawidth = 0.05  # Smear out the grain size by 5% in both directions
        na = 20  # Use 10 grain size samples per bin size
        chop = 1.0  # Remove forward scattering within an angle of 5 degrees
        # Extrapolate optical constants beyond its wavelength grid, if necessary
        extrapol = True
        verbose = False  # If True, then write out status information
        ntheta = 181  # Number of scattering angle sampling points
        # link to optical constants file
        optconstfile = (os.path.expanduser(parameters["opacity_dir"]) + "/" +
                        parameters["species"] + ".lnk")

        # The material density in gram / cm^3
        graindens = 2.0  # default density in g / cc
        if (parameters["species"] == "mix_2species_porous"
                or parameters["species"] == "mix_2species_porous_ice"
                or parameters["species"] == "mix_2species_porous_ice70"):
            graindens = 0.1  # g / cc
        if (parameters["species"] == "mix_2species"
                or parameters["species"] == "mix_2species_60silicates_40ice"):
            graindens = 1.7  # g / cc
        if parameters["species"] == "mix_2species_ice70":
            graindens = 1.26  # g / cc
        if parameters["species"] == "mix_2species_60silicates_40carbons":
            graindens = 2.7  # g / cc

        # Set up a wavelength grid (in cm) upon which we want to compute the opacities
        # 1 micron -> 1 cm
        lamcm = 10.0**np.linspace(0, 4, 200) * 1e-4

        # Set up an angular grid for which we want to compute the scattering matrix Z
        theta = np.linspace(0.0, 180.0, ntheta)

        for ibin in range(int(nbin)):
            # median grain size in cm in current bin size:
            agraincm = 10.0**(
                0.5 *
                (np.log10(1e2 * bins[ibin]) + np.log10(1e2 * bins[ibin + 1])))

            print("====================")
            print("bin ", ibin + 1, "/", nbin)
            print(
                "grain size [cm]: ",
                agraincm,
                " with grain density [g/cc] = ",
                graindens,
            )
            print("====================")
            pathout = parameters["species"] + str(ibin)
            opac = compute_opac_mie(
                optconstfile,
                graindens,
                agraincm,
                lamcm,
                theta=theta,
                extrapolate=extrapol,
                logawidth=logawidth,
                na=na,
                chopforward=chop,
                verbose=verbose,
            )
            if parameters["scat_mode"] >= 3:
                print("Writing dust opacities in dustkapscatmat* files")
                write_radmc3d_scatmat_file(opac, pathout)
            else:
                print("Writing dust opacities in dustkappa* files")
                write_radmc3d_kappa_file(opac, pathout)
    else:
        print(
            "------- taking dustkap* opacity files in current directory (recalc_opac = No in params.dat file) ------ "
        )

    # Write dustopac.inp file even if we don't (re)calculate dust opacities
    if parameters["RTdust_or_gas"] == "dust":
        print("-> writing dust opacities")
        write_dustopac(
            species=parameters["species"],
            scat_mode=parameters["scat_mode"],
            nbin=parameters["nbin"],
        )
        if parameters["plot_opac"] == "Yes":
            print("-> plotting dust opacities")
            plot_opacities(
                species=parameters["species"],
                amin=parameters["amin"],
                amax=parameters["amax"],
                nbin=parameters["nbin"],
                lbda1=parameters["wavelength"] * 1e3,
            )

    print("-> writing radmc3d script")
    write_radmc3d_script(parameters)

    # =========================
    # Call to RADMC3D thermal solution and ray tracing
    # =========================
    if parameters["recalc_radmc"] == "Yes" or parameters[
            "recalc_rawfits"] == "Yes":
        # Write other parameter files required by RADMC3D
        print("--------- printing auxiliary files ----------")

        # need to check why we need to output wavelength...
        if parameters["recalc_rawfits"] == "No":
            write_wavelength()
            write_stars(Rstar=parameters["rstar"], Tstar=parameters["teff"])
            # Write 3D spherical grid for RT computational calculation
            write_AMRgrid(density, Plot=False)

            # rto_style = 3 means that RADMC3D will write binary output files
            # setthreads corresponds to the number of threads (cores) over which radmc3d runs
            write_radmc3dinp(
                incl_dust=parameters["incl_dust"],
                incl_lines=parameters["incl_lines"],
                lines_mode=parameters["lines_mode"],
                nphot_scat=parameters["nb_photons_scat"],
                nphot=parameters["nb_photons"],
                rto_style=3,
                tgas_eq_tdust=parameters["tgas_eq_tdust"],
                modified_random_walk=1,
                scattering_mode_max=parameters["scat_mode"],
                setthreads=parameters["nbcores"],
            )

        # Add 90 degrees to position angle so that RADMC3D's definition of
        # position angle be consistent with observed position
        # angle, which is what we enter in the params.dat file
        M = RTmodel(
            distance=parameters["distance"],
            Lambda=parameters["wavelength"] * 1e3,
            label=parameters["label"],
            line=parameters["gasspecies"],
            iline=parameters["iline"],
            vkms=parameters["vkms"],
            widthkms=parameters["widthkms"],
            npix=parameters["nbpixels"],
            phi=parameters["phiangle"],
            incl=parameters["inclination"],
            posang=parameters["posangle"] + 90.0,
        )

        # Set dust / gas temperature if Tdust_eq_Thydro == 'Yes'
        if (parameters["recalc_rawfits"] == "No"
                and parameters["Tdust_eq_Thydro"] == "Yes"
                and parameters["RTdust_or_gas"] == "dust"
                and parameters["recalc_temperature"] == "Yes"):
            print("--------- Writing temperature file (no mctherm) ----------")
            os.system("rm -f dust_temperature.bdat")  # avoid confusion!...
            TEMPOUT = open("dust_temperature.dat", "w")
            TEMPOUT.write("1 \n")  # iformat
            TEMPOUT.write(str(nrad * nsec * ncol) + " \n")  # n cells
            TEMPOUT.write(str(int(nbin)) + " \n")  # nbin size bins

            gas_temp = np.zeros((ncol, nrad, nsec))
            thydro = (parameters["aspectratio"] * parameters["aspectratio"] *
                      density.cutemp *
                      density.rmed**(-1.0 + 2.0 * parameters["flaringindex"]))
            for k in range(nsec):
                for j in range(ncol):
                    gas_temp[j, :, k] = thydro

            # write dust temperature for all size bins
            for ibin in range(nbin):
                print(
                    "writing temperature of dust species in bin",
                    ibin,
                    "out of ",
                    nbin - 1,
                )
                for k in range(nsec):
                    for j in range(ncol):
                        for i in range(nrad):
                            TEMPOUT.write(str(gas_temp[j, i, k]) + " \n")
            TEMPOUT.close()
            del gas_temp

        # Now run RADMC3D
        if parameters["recalc_rawfits"] == "No":
            print("--------- Now executing RADMC3D ----------")
            os.system("./script_radmc")

        print("--------- exporting results in fits format ----------")
        outfile = exportfits(M, parameters)

        if parameters["plot_temperature"] == "Yes":
            plot_temperature(nbin, nsec, ncol, nrad, density, parameters)
    else:
        print(
            "------- I did not run RADMC3D, using existing .fits file for convolution "
        )
        print(
            "------- (recalc_radmc = No in params.dat file) and final image ------ "
        )

        if parameters["RTdust_or_gas"] == "dust":
            outfile = ("image_" + str(parameters["label"]) + "_lbda" +
                       str(parameters["wavelength"]) + "_i" +
                       str(parameters["inclination"]) + "_phi" +
                       str(parameters["phiangle"]) + "_PA" +
                       str(parameters["posangle"]))
        else:
            print(
                "Set of initial conditions not implemented for pluto yet. Only parameters['RTdust_or_gas'] == 'dust'"
            )
            sys.exit("I must exit!")

        if parameters["secondorder"] == "Yes":
            outfile = outfile + "_so"
        if parameters["dustdens_eq_gasdens"] == "Yes":
            outfile = outfile + "_ddeqgd"
        if parameters["bin_small_dust"] == "Yes":
            outfile = outfile + "_bin0"

        outfile = outfile + ".fits"

    # =========================
    # Convolve raw flux with beam and produce final image
    # =========================
    if parameters["recalc_fluxmap"] == "Yes":
        print("--------- Convolving and writing final image ----------")

        f = fits.open("./" + outfile)

        # remove .fits extension
        outfile = os.path.splitext(outfile)[0]

        # add bmaj information
        outfile = outfile + "_bmaj" + str(parameters["bmaj"])

        outfile = outfile + ".fits"

        hdr = f[0].header
        # pixel size converted from degrees to arcseconds
        cdelt = np.abs(hdr["CDELT1"] * 3600.0)

        # get wavelength and convert it from microns to mm
        lbda0 = hdr["LBDAMIC"] * 1e-3

        # no polarized scattering: fits file directly contains raw intensity field
        if parameters["polarized_scat"] == "No":
            nx = hdr["NAXIS1"]
            ny = hdr["NAXIS2"]
            raw_intensity = f[0].data
            if parameters["recalc_radmc"] == "No" and parameters[
                    "plot_tau"] == "No":
                # sum over pixels
                print("Total flux [Jy] = " + str(np.sum(raw_intensity)))
            # check beam is correctly handled by inserting a source point at the
            # origin of the raw intensity image
            if parameters["check_beam"] == "Yes":
                raw_intensity[:, :] = 0.0
                raw_intensity[nx // 2 - 1, ny // 2 - 1] = 1.0
            # Add white (Gaussian) noise to raw flux image to simulate effects of 'thermal' noise
            if (parameters["add_noise"] == "Yes"
                    and parameters["RTdust_or_gas"] == "dust"
                    and parameters["plot_tau"] == "No"):
                # beam area in pixel^2
                beam = ((np.pi / (4.0 * np.log(2.0))) * parameters["bmaj"] *
                        parameters["bmin"] / (cdelt**2.0))
                # noise standard deviation in Jy per pixel (I've checked the expression below works well)
                noise_dev_std_Jy_per_pixel = parameters[
                    "noise_dev_std"] / np.sqrt(0.5 * beam)  # 1D
                # noise array
                noise_array = np.random.normal(
                    0.0,
                    noise_dev_std_Jy_per_pixel,
                    size=parameters["nbpixels"] * parameters["nbpixels"],
                )
                noise_array = noise_array.reshape(parameters["nbpixels"],
                                                  parameters["nbpixels"])
                raw_intensity += noise_array
            if parameters["brightness_temp"] == "Yes":
                # beware that all units are in cgs! We need to convert
                # 'intensity' from Jy/pixel to cgs units!
                # pixel size in each direction in cm
                pixsize_x = cdelt * parameters["distance"] * au
                pixsize_y = pixsize_x
                # solid angle subtended by pixel size
                pixsurf_ster = (pixsize_x * pixsize_y /
                                parameters["distance"] /
                                parameters["distance"] / pc / pc)
                # convert intensity from Jy/pixel to erg/s/cm2/Hz/sr
                intensity_buf = raw_intensity / 1e23 / pixsurf_ster
                # beware that lbda0 is in mm right now, we need to have it in cm in the expression below
                raw_intensity = (h * c / kB / (lbda0 * 1e-1)) / np.log(
                    1.0 +
                    2.0 * h * c / intensity_buf / pow((lbda0 * 1e-1), 3.0))
                # raw_intensity = np.nan_to_num(raw_intensity)
        else:
            print(
                "Set of initial conditions not implemented for pluto yet. Only parameters['polarized_scat'] == 'No'"
            )
            sys.exit("I must exit!")

        # ------------
        # smooth image
        # ------------
        # beam area in pixel^2
        beam = ((np.pi / (4.0 * np.log(2.0))) * parameters["bmaj"] *
                parameters["bmin"] / (cdelt**2.0))
        # stdev lengths in pixel
        stdev_x = (parameters["bmaj"] /
                   (2.0 * np.sqrt(2.0 * np.log(2.0)))) / cdelt
        stdev_y = (parameters["bmin"] /
                   (2.0 * np.sqrt(2.0 * np.log(2.0)))) / cdelt

        # a) case with no polarized scattering
        if parameters["polarized_scat"] == "No" and parameters[
                "plot_tau"] == "No":
            # Call to Gauss_filter function
            if parameters["moment_order"] != 1:
                smooth = Gauss_filter(raw_intensity,
                                      stdev_x,
                                      stdev_y,
                                      parameters["bpaangle"],
                                      Plot=False)
            else:
                smooth = raw_intensity

            # convert image from Jy/pixel to mJy/beam or microJy/beam
            # could be refined...
            if parameters["brightness_temp"] == "Yes":
                convolved_intensity = smooth
            else:
                convolved_intensity = smooth * 1e3 * beam  # mJy/beam

            strflux = "Flux of continuum emission (mJy/beam)"
            if parameters["gasspecies"] == "co":
                strgas = r"$^{12}$CO"
            elif parameters["gasspecies"] == "13co":
                strgas = r"$^{13}$CO"
            elif parameters["gasspecies"] == "c17o":
                strgas = r"C$^{17}$O"
            elif parameters["gasspecies"] == "c18o":
                strgas = r"C$^{18}$O"
            elif parameters["gasspecies"] == "hco+":
                strgas = r"HCO+"
            elif parameters["gasspecies"] == "so":
                strgas = r"SO"
            else:
                strgas = parameters["gasspecies"]
            if parameters["gasspecies"] != "so":
                strgas += r" ($%d \rightarrow %d$)" % (
                    parameters["iline"],
                    parameters["iline"] - 1,
                )
            if parameters["gasspecies"] == "so" and parameters["iline"] == 14:
                strgas += r" ($5_6 \rightarrow 4_5$)"

            if parameters["brightness_temp"] == "Yes":
                if parameters["RTdust_or_gas"] == "dust":
                    strflux = r"Brightness temperature (K)"
            else:
                if convolved_intensity.max() < 1.0:
                    convolved_intensity = smooth * 1e6 * beam  # microJy/beam
                    strflux = r"Flux of continuum emission ($\mu$Jy/beam)"

        if parameters["plot_tau"] == "Yes":
            convolved_intensity = raw_intensity
            strflux = r"Absorption optical depth $\tau"

        # -------------------------------------
        # SP: save convolved flux map solution to fits
        # -------------------------------------
        hdu = fits.PrimaryHDU()
        hdu.header["BITPIX"] = -32
        hdu.header["NAXIS"] = 2  # 2
        hdu.header["NAXIS1"] = parameters["nbpixels"]
        hdu.header["NAXIS2"] = parameters["nbpixels"]
        hdu.header["EPOCH"] = 2000.0
        hdu.header["EQUINOX"] = 2000.0
        hdu.header["LONPOLE"] = 180.0
        hdu.header["CTYPE1"] = "RA---SIN"
        hdu.header["CTYPE2"] = "DEC--SIN"
        hdu.header["CRVAL1"] = float(0.0)
        hdu.header["CRVAL2"] = float(0.0)
        hdu.header["CDELT1"] = hdr["CDELT1"]
        hdu.header["CDELT2"] = hdr["CDELT2"]
        hdu.header["LBDAMIC"] = hdr["LBDAMIC"]
        hdu.header["CUNIT1"] = "deg     "
        hdu.header["CUNIT2"] = "deg     "
        hdu.header["CRPIX1"] = float((parameters["nbpixels"] + 1.0) / 2.0)
        hdu.header["CRPIX2"] = float((parameters["nbpixels"] + 1.0) / 2.0)
        if strflux == "Flux of continuum emission (mJy/beam)":
            hdu.header["BUNIT"] = "milliJY/BEAM"
        if strflux == r"Flux of continuum emission ($\mu$Jy/beam)":
            hdu.header["BUNIT"] = "microJY/BEAM"
        if strflux == "":
            hdu.header["BUNIT"] = ""
        hdu.header["BTYPE"] = "FLUX DENSITY"
        hdu.header["BSCALE"] = 1
        hdu.header["BZERO"] = 0
        del hdu.header["EXTEND"]
        # keep track of all parameters in params.dat file
        # for i in range(len(lines_params)):
        #    hdu.header[var[i]] = par[i]
        hdu.data = convolved_intensity
        inbasename = os.path.basename("./" + outfile)
        if parameters["add_noise"] == "Yes":
            substr = "_wn" + str(parameters["noise_dev_std"]) + "_JyBeam.fits"
            jybeamfileout = re.sub(".fits", substr, inbasename)
        else:
            jybeamfileout = re.sub(".fits", "_JyBeam.fits", inbasename)
        hdu.writeto(jybeamfileout, overwrite=True)

        plot_image(nx, cdelt, lbda0, strflux, convolved_intensity,
                   jybeamfileout, parameters)

    print("--------- done! ----------")
예제 #6
0
def convert_bulk_bkg(obj3d, org_obj3d, result_dir, job,
			init_layer, final_layer, task, kwargs, is_verbose):
	X = np.array(np.where(obj3d == 1.0)).T
	obj3d_nan = np.full(obj3d.shape, np.nan) # obj3d.shape
	

	# # for HAC only
	# kwargs = dict({"distance_threshold":None,
	# 		"n_clusters":200, # either "distance_threshold" or "n_clusters" will be set
	# 		"affinity":'euclidean', "linkage":'ward', 
	# 		})
	# hac_model = hac(**kwargs)
	# hac_model.fit(X)
	# saveat = result_dir+"/dedogram.pdf"
	# labels = hac_model.model.labels_
	# # # for HAC ploting only
	# dd_plot_kwargs = dict({"truncate_mode":'level', "p":3})
	# dendrogram = hac_model.plot_dendrogram(saveat=saveat, **dd_plot_kwargs)
	# # print (dendrogram["ivl"])

	layer_id = "/layer_{0}-{1}".format(init_layer, final_layer)

	by_particle_dir = result_dir+text_dir+"/particles/"+job+layer_id
	print ("Prepare to fit")
	clusterer = hdbscan.HDBSCAN(min_cluster_size=kwargs["min_cluster_size"], 
		min_samples=kwargs["min_samples"], 
		alpha=kwargs["alpha"], allow_single_cluster=kwargs["allow_single_cluster"],
		prediction_data=True)
	# X_fit = copy.copy(X)
	# density = []
	# points = np.array(X)
	# for p in points:
	# 	pz, py, px = p[0], p[1], p[2]
	# 	print ("pz, py, px", pz, py, px)
	# 	n_upsampling = int(org_obj3d[pz][py][px]*1000)
		# if n_upsampling > 0:
		# 	# print ("Upsampling: ", n_upsampling, "points")
		# 	for i in range(n_upsampling):
		# 		p_sample = one_sample(px, py, pz, final_layer, init_layer)
		# 		X_fit = np.append(X_fit, [p_sample], axis=0)

	# print ("density:", density)
	# X_fit = np.append(X_fit, np.array(density), axis=1)
	
	# X_fit = minmax_scale(X_fit)

	clusterer.fit(X)
	print ("Done fitting")

	# labels = clusterer.predict(X)

	labels, strengths = hdbscan.approximate_predict(clusterer, X)

	assert X.shape[0] == len(labels)

	if is_verbose:
		# # # plot dendrogram
		fig = plt.figure(figsize=(10, 10), dpi=300)
		clusterer.condensed_tree_.plot(select_clusters=True,
	        selection_palette=sns.color_palette('deep', 8))
		save_at = by_particle_dir+"dendrogram.pdf"
		makedirs(save_at)
		fig.tight_layout(rect=[0, 0.03, 1, 0.95])
		plt.savefig(save_at, transparent=False)
		print ("Save file at:", save_at)

		# # # End plot dendrogram

	set_labels = set(labels)
	n_clusters = len(set_labels)

	cmap = plt.cm.rainbow
	norm = matplotlib.colors.Normalize(vmin=0.0, vmax=n_clusters)

	for lbl in set_labels:
		pos_of_lbl = X[np.where(labels==lbl)]
		# print (pos_of_lbl)

		zs, ys, xs  = pos_of_lbl[:, 0], pos_of_lbl[:, 1], pos_of_lbl[:, 2]
		obj3d_nan[zs, ys, xs] = lbl #[lbl] * len(pos_of_lbl)

		print ("lbl:", lbl, "total:", len(set_labels), "particle size:", len(xs), len(ys), len(zs))
		parse2submatrix(org_data=org_obj3d, 
			xs=xs, ys=ys, zs=zs, savedir=by_particle_dir,
			pid=lbl, task=task,
			init_layer=init_layer, final_layer=final_layer,
			is_verbose=is_verbose)
		# break		 

	label_dir = result_dir+text_dir+"/lbl_in3D/"+job+layer_id
	label_fig_dir = result_dir+fig_dir+"/lbl_in3D/"+job+layer_id

	n_layers = obj3d.shape[0]

	vmin = np.nanmin(obj3d_nan)
	vmax = np.nanmax(obj3d_nan)

	for ith, layer in enumerate(range(init_layer, final_layer+1)):
		data = obj3d_nan[ith]
		file = label_dir+"/lbl_{}.txt".format(layer)
		makedirs(file)
		save_layer2text(data, file=file)
		print ("Save at:", file)

		if is_verbose:
			figfile = label_fig_dir+"/lbl_{}.pdf".format(layer)
			plot_density(values=data, save_at=figfile,  cmap_name="jet", 
					title=layer, vmin=vmin, vmax=vmax, is_save2input=None,
					is_lbl=True,set_labels=set_labels)
예제 #7
0
def redox_lbl(fixT, fixP, fixV, diff_state, task="diff_p"):
    final_state, init_state = diff_state

    if task == "diff_p":
        fix_val = "{0}{1}".format(fixT, fixV)
    if task == "diff_v":
        fix_val = "{0}{1}".format(fixT, fixP)
    if task == "diff_t":
        fix_val = "{0}{1}".format(fixP, fixV)

    consider_Ft = "Pt-O"
    prefix_input = fix_val + consider_Ft
    diff_PtO = "{0}/feature/task1/{1}/{2}_{3}___{4}.txt".format(
        input_dir, task, prefix_input, final_state, init_state)
    diff_PtO_val, is_diff_PtO_pos = pos_neg_lbl_cvt(inputfile=diff_PtO)

    consider_Ft = "Pt-valence"
    prefix_input = fix_val + consider_Ft
    diff_PtVal = "{0}/feature/task1/{1}/{2}_{3}___{4}.txt".format(
        input_dir, task, prefix_input, final_state, init_state)
    diff_PtVal_val, is_diff_PtVal_pos = pos_neg_lbl_cvt(inputfile=diff_PtVal)

    consider_Ft = "Pt-Pt"
    prefix_input = fix_val + consider_Ft
    diff_PtPt = "{0}/feature/task1/{1}/{2}_{3}___{4}.txt".format(
        input_dir, task, prefix_input, final_state, init_state)

    diff_PtPt_val, is_diff_PtPt_pos = pos_neg_lbl_cvt(inputfile=diff_PtPt)

    # all shape checked
    # print ("is_diff_PtDens_pos", diff_PtDens_val)
    # print ("is_diff_PtVal_pos", diff_PtVal_val)
    # print ("is_diff_PtPt_pos", diff_PtPt_val)

    redox_states = redox_state_lbl(is_diff_PtO_pos=is_diff_PtO_pos,
                                   is_diff_PtVal_pos=is_diff_PtVal_pos,
                                   is_diff_PtPt_pos=is_diff_PtPt_pos)

    redox_sum = sum(redox_states, axis=0)
    # # filter crack area
    # if task == "diff_t":
    print(init_state)
    bulk_label_file = path + "feature/task3/num_bulk_label" + fixP + fixT + fixV + "_morphology.txt"
    bulk_label_lbl = np.loadtxt(bulk_label_file)
    # crack_id = np.where(bulk_label_lbl==-1)
    redox_sum = np.array(redox_sum)
    redox_sum[bulk_label_lbl == -1] = np.nan  # np.nan
    print("Shape before: ", redox_sum.shape)
    # # delete 10 columns on the left

    redox_sum_copy = copy.copy(redox_sum)
    redox_sum_copy = np.delete(redox_sum_copy, index2remove,
                               1)  # delete second column of C
    print("Shape after: ", redox_sum_copy.shape)

    # # to plot
    vmin = 1
    vmax = 8
    cmap_name = "jet"
    # cmap_name = cm.get_cmap('PiYG', 8)

    prefix = "{0}/redox/{1}/{2}_{3}___{4}".format(result_dir, task, fix_val,
                                                  final_state, init_state)

    save_at = prefix + ".pdf"

    redox_file_save_at = "{0}/redox/{1}/{2}_{3}___{4}.txt".format(
        input_dir, task, fix_val, final_state, init_state)
    plot_density(
        values=redox_sum_copy,
        save_at=save_at,  # diff_PtDens_lbl
        title=save_at.replace(result_dir, ""),
        cmap_name=cmap_name,
        vmin=vmin,
        vmax=vmax,
        is_save2input=redox_file_save_at)

    # # save to txt
    save_txt = prefix.replace("result", "input") + ".txt"
    makedirs(save_txt)

    np.savetxt(save_txt, redox_sum_copy)  # redox_sum_copy, redox_sum

    for i, rst in enumerate(redox_states):
        tmp_save_at = "{0}/redox_{1}.pdf".format(prefix, i + 1)
        plot_density(values=rst,
                     save_at=tmp_save_at,
                     title=tmp_save_at.replace(result_dir, ""),
                     cmap_name=cmap_name,
                     vmin=vmin,
                     vmax=vmax)
예제 #8
0
def GaussianMixtureModel(
    inputdf,
    gmm_var,
    savedir,
    cmap_name,
    bulk_inst,
    is_2densitymap=False,
    n_components=3,
    sort_ax_gmm=1,
    xlbl_plot=None,
    ylbl_plot=None,
    xlbl_2fig=None,
    ylbl_2fig=None,
    is_gmm_xhist=True,
    is_gmm_yhist=False,
    xlim=None,
    ylim=None,
    means_init=None,
    is_save_gmm=False,  # for the case we need to save best_gmm file, most use for fit all 
    is_exist_gmm=False,  # for the case gmm files already exist, no need to fit again
    best_gmm_file=None):
    n_sampling = 20
    is_need_add_zero = False
    """
        inputdf: index: pixel index of each image
        gmm_var: [feature1, feature2]
        bulk_inst: pixel with label "bulk"
        is_save_gmm: for the case we need to save best_gmm file, most use for fit all
        is_exist_gmm: for the case gmm files already exist, no need to fit again
    """

    xlbl, ylbl, df, X_matrix_search, selected_inst = get_df_xylbl_XGmm(
        inputdf=inputdf,
        gmm_var=gmm_var,
        xlbl_plot=xlbl_plot,
        ylbl_plot=ylbl_plot,
        bulk_inst=bulk_inst)

    print(np.min(X_matrix_search), np.max(X_matrix_search))
    #X_matrix_search = df.loc[:, gmm_var]
    score_df = pd.DataFrame(index=range(n_sampling), columns=["AIC", "BIC"])

    # # # # # # # # # # # # # # # # # # # # # # #
    #
    # add zero points
    #
    # # # # # # # # # # # # # # # # # # # # # # #
    if is_need_add_zero:
        zeros = [[0.0]] * 20000
        X_matrix_search_tmp = np.concatenate((X_matrix_search, zeros))
        print(X_matrix_search_tmp)
    else:
        X_matrix_search_tmp = X_matrix_search

    # # # # # # # # # # # # # # # # # # # # # # #
    #
    # get best_gmm model, either load or train
    #
    # # # # # # # # # # # # # # # # # # # # # # #
    if is_exist_gmm:
        # if exist best_gmm, then load best_gmm in "best_gmm_file" (same to gmm_file2save)
        # best_gmm_file = "{0}/best_gmm.pickle".format(savedir)
        best_gmm = pickle.load(open(best_gmm_file, 'rb'))

    else:
        # if no exist best_gmm model, then find it
        best_gmm, score_df = get_best_gmm(
            X_matrix=X_matrix_search_tmp,  # .reshape(-1, 1) 
            n_components=n_components,
            n_sampling=n_sampling,
            score_df=score_df,
            means_init=means_init)

        # X_matrix = np.array(df[gmm_var])
        # best_gmm.fit(X=X_matrix_search)
        makedirs("{0}/GMM_score.csv".format(savedir))
        score_df.to_csv("{0}/GMM_score.csv".format(savedir))

        if is_save_gmm:
            gmm_file2save = "{0}/best_gmm.pickle".format(savedir)
            makedirs(gmm_file2save)
            pickle.dump(best_gmm, open(gmm_file2save, 'wb'))

        # # # # # # # # # # # # # # # # # # # # # # #
        #
        # save pre transform model to file
        #
        # # # # # # # # # # # # # # # # # # # # # # #
    means = best_gmm.means_
    cov_matrix = best_gmm.covariances_
    weight = best_gmm.weights_
    txt2save = "{0}/gmm_center_non_transform.txt".format(savedir)
    makedirs(txt2save)
    save_output(filename=txt2save,
                means=means,
                cov_matrix=cov_matrix,
                weight=weight,
                axis_sort=None,
                sort_index=None)

    # print (gmm_var)
    # labels = best_gmm.predict(X=df.loc[selected_inst, gmm_var].values.reshape(-1, 1))
    labels = best_gmm.predict(X=X_matrix_search)

    print(best_gmm)
    print(set(labels))
    print(means, cov_matrix)
    new_labels, means_argsort = re_arrange_gmm_lbl(means=means,
                                                   labels=labels,
                                                   sort_ax=sort_ax_gmm)

    # # # # # # # # # # # # # # # # # # # # # # #
    #
    # save after transform model to file
    #
    # # # # # # # # # # # # # # # # # # # # # # #
    means = means[means_argsort]
    cov_matrix = cov_matrix[means_argsort]
    weight = weight[means_argsort]
    txt2save = "{0}/gmm_center_transform.txt".format(savedir)
    makedirs(txt2save)
    save_output(filename=txt2save,
                means=means,
                cov_matrix=cov_matrix,
                weight=weight,
                axis_sort=sort_ax_gmm,
                sort_index=means_argsort)

    # # # # # # # # # # # # # # # # # # # # # # #
    #
    # create a main axis to plot, x_axis and y_axis
    #
    # # # # # # # # # # # # # # # # # # # # # # #
    if is_2densitymap:
        plot_joinmap(df=df,
                     selected_inst=selected_inst,
                     xlbl=xlbl,
                     ylbl=ylbl,
                     xlbl_2fig=xlbl_2fig,
                     ylbl_2fig=ylbl_2fig,
                     new_labels=new_labels,
                     gmm_var=gmm_var,
                     savedir=savedir,
                     is_gmm_xhist=is_gmm_xhist,
                     is_gmm_yhist=is_gmm_yhist,
                     means=means,
                     weight=weight,
                     cov_matrix=cov_matrix,
                     n_components=n_components,
                     xlim=xlim,
                     ylim=ylim)

    # # # # # # # # # # # # # # # # # # # # # # #
    #
    # plot density map
    #
    # # # # # # # # # # # # # # # # # # # # # # #
    if is_2densitymap:
        inputdf["gmm_lbl"] = np.nan
        inputdf.loc[selected_inst, "gmm_lbl"] = new_labels + 1
        gmm_lbl_df = pd.DataFrame(inputdf["gmm_lbl"].values.reshape(
            x_size, y_size).T)
        gmm_lbl_df.to_csv("{0}/gmm_label.csv".format(savedir))
        save_at = "{0}/gmm_all".format(savedir)
        plot_density(values=gmm_lbl_df.values,
                     save_at=save_at,
                     vmin=1.0,
                     vmax=n_components,
                     cmap_name=cmap_name)