def run_batch(self): """ Runs lmc program with given inputs (if any), until all inputs have been used. Checks the outputs to ensure they match those expected (--checker used). Plots a graph of input against cycles taken (--graph used). """ if len(self.potential_values) == 0: self.run_once() # run the program repeatedly for multiple input values while len(self.potential_values) > 0: self.run_program() if self.checker: if len(self.unexpected_outputs) == 0: print("The program passed all tests.") else: print("The program failed %d tests." % len(self.unexpected_outputs)) for inputs, expected_outputs, outputs in self.unexpected_outputs: inputs = ', '.join(str(val) for val in inputs) expected_outputs = ', '.join(str(val) for val in expected_outputs) outputs = ', '.join(str(val) for val in outputs) print("inputs: %s, expected_output: %s, output: %s" % (inputs, expected_outputs, outputs)) self.write_feedback() if self.has_graph: plot.plot_graph(self.inputs_and_cycles)
def spider_closed(self, spider): spider.logger.info('Spider closed') self.graph.write_graph_to_file("my_graph.json") plot.plot_graph(self.graph) # Should we allow for spelling errors or should we check for them? # at what point should we start implementing a GUI? # the user should control how much the graph grows,
def spider_closed(self, spider): spider.logger.info('Spider closed') self.graph.write_graph_to_file(self.a_file, self.f_file) plot.plot_graph(self.graph) # the graph could scale nodes in terms of popularity, both for films and actors # need to create a user interface that calls these methods so the user doesn't have to all the time # CLI takes two arguments for names and title even though lots of names and titles have more than two words # CLI should take one argument and break it up accoridingly if need be
def pso(): swarm = Swarm() particle0 = Particle(my_function.min_val, my_function.max_val) swarm.particles.append(particle0) swarm.global_best_position = particle0.position particle0.best_value = my_function.my_function(particle0.position[0], particle0.position[1]) swarm.global_best_value = particle0.best_value for i in range(0, max_particle - 1): particle = Particle(my_function.min_val, my_function.max_val) swarm.particles.append(particle) value = my_function.my_function(particle.position[0], particle.position[1]) particle.best_value = value if value < swarm.global_best_value: swarm.global_best_value = value swarm.global_best_position = particle.position if to_plot: plot_graph(None, my_function.function_name, 'viridis', None) plot_graph(swarm.particles, 'initial state', 'Pastel1', swarm.global_best_position) # position(k+1) = position(k) + v(k+1) # v(k+1) = w(k+1) * v(k) + # cp(k+1) * rand * (best_position(k) - position(k)) + # cg(k+1) * rand * (global_best_position - position(k)) for it in range(0, max_iteration): for particle in swarm.particles: v_kplus1 = w(it) * particle.prev_v + \ cp(it) * np.random.random() * (particle.best_position - particle.position) + \ cg(it) * np.random.random() * (swarm.global_best_position - particle.position) next_position = particle.position + v_kplus1 value = my_function.my_function(particle.position[0], particle.position[1]) if value < particle.best_value: particle.best_value = value particle.best_position = next_position particle.position = next_position particle.prev_v = v_kplus1 for particle in swarm.particles: value = my_function.my_function(particle.position[0], particle.position[1]) if value < swarm.global_best_value: swarm.global_best_value = value swarm.global_best_position = particle.position if it % (max_iteration // 10) == 0 and to_plot: plot_graph(swarm.particles, 'iteration ' + str(it + 1), 'Pastel1', swarm.global_best_position) if to_plot: plot_graph(swarm.particles, 'final state', 'Pastel1', swarm.global_best_position) print('x = {0}'.format(swarm.global_best_position[0])) print('y = {0}'.format(swarm.global_best_position[1])) print('Global best = {0}'.format(swarm.global_best_value)) analytic_xy, analytic_best = my_function.analytic_result() print('\nPontos eredmény:') print('x = {0}'.format(analytic_xy[0])) print('y = {0}'.format(analytic_xy[1])) print('Global best = {0}'.format(analytic_best))
def run(): print "Random Forest Regressor started..." dir_path = "" train_file_path = dir_path + "train.csv" train_file = read_csv(train_file_path, skiprows=1, header=None) train_file = train_file.drop(train_file.columns[0], axis=1) train_file = train_file.values train_X_temp = train_file[5:50000, :-1] train_Y = train_file[6:50001, -1] train_X = np.zeros((train_X_temp.shape[0], 8 * 5)) for i in range(train_X_temp.shape[0]): for j in range(5): for k in range(8): train_X[i][j * 8 + k] = train_X_temp[i - j][k] test_file_name = dir_path + "test2.csv" test_file = read_csv(test_file_name, skiprows=1, header=None) test_file = test_file.values test_X = np.array(test_file[:, :-1]) test_y = test_file[:, -1] scores_array = [] mean_array = [] variance_array = [] factors = [] for i in range(2, 11): factors.append(i) for j in range(1, 40): model = RandomForestRegressor(n_jobs=-1, max_features=len(train_X[0]) / i) estimators = [10] scores = [] prediction = [] for n in estimators: model.set_params(n_estimators=n) model.fit(train_X, train_Y) scores.append(model.score(test_X, test_y)) scores_array.append(scores[0]) prediction.append(model.predict(test_X)) mean_array.append(sum(scores_array) / len(scores_array)) variance_array.append(np.var(scores_array)) print "Mean array:\n", mean_array print "Variance array:\n", variance_array plot_graph(factors, variance_array, "Feature division factor", "Variance of accuracy scores") plot_graph(factors, mean_array, "Feature division factor", "Mean of accuracy scores")
def index_post(): if request.form['submit'] == 'Submit': try: query1 = request.form['Query1'] query1 = str(query1) query2 = request.form['Query2'] query2 = str(query2) # tsearch(query1, query2) p1, n1, p2, n2 = classifier() plot_graph(query1, query2, p1, n1, p2, n2) return render_template('home.html', q1=query1.upper(), q2=query2.upper(), p1=p1, n1=n1, p2=p2, n2=n2) except: return render_template('home.html', error="Sorry! No Tweets Found,Enter Again")
def plot_coverage(title, region_start, region_end, alignment_filename): if not validate_alignment(alignment_filename): return None exit() data = read_file(alignment_filename)[1:] starts = [eval(row[0]) for row in data] ends = [eval(row[1]) for row in data] counts = coverage(sorted(starts), sorted(ends), region_start, region_end) alignment_filename = alignment_filename.replace('.csv', '.svg') svg_file = plot.plot_graph(region_start, region_end, counts, title, alignment_filename) if len(counts) == 0: minimum_coverage, maximum_coverage, average_coverage = 0, 0, 0 else: minimum_coverage = min(item for item in counts) maximum_coverage = max(item for item in counts) average_coverage = sum(counts)/float(len(counts)) return (minimum_coverage, maximum_coverage, round(average_coverage,2))
def evaluate( airsim_traj_path, meshroom_traj_path, airsim_ply_path, meshroom_ply_path, crop_bbox_path, alignment_matrix_path, ): assert os.path.isfile( airsim_traj_path), f"File not found: '{airsim_traj_path}'" assert os.path.isfile( meshroom_traj_path), f"File not found: '{meshroom_traj_path}'" assert os.path.isfile( airsim_ply_path), f"File not found: '{airsim_ply_path}'" assert os.path.isfile( meshroom_ply_path), f"File not found: '{meshroom_ply_path}'" assert os.path.isfile( crop_bbox_path), f"File not found: '{crop_bbox_path}'" assert os.path.isfile( alignment_matrix_path), f"File not found: '{alignment_matrix_path}'" # TODO update TanksAndTemples's python_toolbox/evaluation/run.py and move # the main "evaluation portion" of the code to the TanksAndTemples class. os.makedirs(EVALUATION_OUT_FOLDER, exist_ok=False) # Load reconstruction and according ground-truth print(meshroom_ply_path) pcd = o3d.io.read_point_cloud(meshroom_ply_path) print(airsim_ply_path) gt_pcd = o3d.io.read_point_cloud(airsim_ply_path) traj = read_trajectory(meshroom_traj_path) # generated .log file gt_traj = read_trajectory(airsim_traj_path) # reference .log file gt_trans = np.loadtxt( alignment_matrix_path) # alignment matrix (<scene>_trans.txt) transformation = trajectory_alignment(None, traj, gt_traj, gt_trans) # Refine alignment by using the actual ground-truth pointcloud vol = o3d.visualization.read_selection_polygon_volume(crop_bbox_path) # Registration refinement in 3 iterations r2 = registration_vol_ds(pcd, gt_pcd, transformation, vol, DTAU, DTAU * 80, 20) r3 = registration_vol_ds(pcd, gt_pcd, r2.transformation, vol, DTAU / 2, DTAU * 20, 20) r = registration_unif(pcd, gt_pcd, r3.transformation, vol, 2 * DTAU, 20) # Histograms and P/R/F1 precision, recall, fscore, *histograms_data = EvaluateHisto( SCENE, filename_mvs=EVALUATION_OUT_FOLDER, source=pcd, target=gt_pcd, trans=r.transformation, crop_volume=vol, voxel_size=DTAU / 2, threshold=DTAU, plot_stretch=5, ) # XXX ^^^^ move to a specific function print("==============================") print("evaluation result : %s" % SCENE) print("==============================") print("distance tau : %.3f" % DTAU) print("precision : %.4f" % precision) print("recall : %.4f" % recall) print("f-score : %.4f" % fscore) print("==============================") # Plotting edges_source, cum_source, edges_target, cum_target = histograms_data plot_graph( SCENE, mvs_outpath=EVALUATION_OUT_FOLDER, fscore=fscore, edges_source=edges_source, cum_source=cum_source, edges_target=edges_target, cum_target=cum_target, plot_stretch=5, dist_threshold=DTAU, )
from graph import Graph from plot import plot_graph from graphRandomizer import generate_Gnl_graph, generate_Gnp_graph if __name__ == "__main__": print("Generate G(n, l):") G_nl = generate_Gnl_graph(6, 10) plot_graph(G_nl) print("Generate G(n, p):") G_np = generate_Gnp_graph(8, 0.3) plot_graph(G_np)
def run_evaluation(dataset_dir, traj_path, ply_path, out_dir): scene = os.path.basename(os.path.normpath(dataset_dir)) if scene not in scenes_tau_dict: print(dataset_dir, scene) raise Exception("invalid dataset-dir, not in scenes_tau_dict") print("") print("===========================") print("Evaluating %s" % scene) print("===========================") dTau = scenes_tau_dict[scene] # put the crop-file, the GT file, the COLMAP SfM log file and # the alignment of the according scene in a folder of # the same scene name in the dataset_dir colmap_ref_logfile = os.path.join(dataset_dir, scene + "_COLMAP_SfM.log") alignment = os.path.join(dataset_dir, scene + "_trans.txt") gt_filen = os.path.join(dataset_dir, scene + ".ply") cropfile = os.path.join(dataset_dir, scene + ".json") map_file = os.path.join(dataset_dir, scene + "_mapping_reference.txt") make_dir(out_dir) # Load reconstruction and according GT print(ply_path) pcd = o3d.io.read_point_cloud(ply_path) print(gt_filen) gt_pcd = o3d.io.read_point_cloud(gt_filen) gt_trans = np.loadtxt(alignment) traj_to_register = read_trajectory(traj_path) gt_traj_col = read_trajectory(colmap_ref_logfile) trajectory_transform = trajectory_alignment(map_file, traj_to_register, gt_traj_col, gt_trans, scene) # Refine alignment by using the actual GT and MVS pointclouds vol = o3d.visualization.read_selection_polygon_volume(cropfile) # big pointclouds will be downlsampled to this number to speed up alignment dist_threshold = dTau # Registration refinment in 3 iterations r2 = registration_vol_ds(pcd, gt_pcd, trajectory_transform, vol, dTau, dTau * 80, 20) r3 = registration_vol_ds(pcd, gt_pcd, r2.transformation, vol, dTau / 2.0, dTau * 20, 20) r = registration_unif(pcd, gt_pcd, r3.transformation, vol, 2 * dTau, 20) # Histogramms and P/R/F1 plot_stretch = 5 [ precision, recall, fscore, edges_source, cum_source, edges_target, cum_target, ] = EvaluateHisto( pcd, gt_pcd, r.transformation, vol, dTau / 2.0, dTau, out_dir, plot_stretch, scene, ) eva = [precision, recall, fscore] print("==============================") print("evaluation result : %s" % scene) print("==============================") print("distance tau : %.3f" % dTau) print("precision : %.4f" % eva[0]) print("recall : %.4f" % eva[1]) print("f-score : %.4f" % eva[2]) print("==============================") # Plotting plot_graph( scene, fscore, dist_threshold, edges_source, cum_source, edges_target, cum_target, plot_stretch, out_dir, )
users = cur.fetchall() con.close() return users def clear_data(): con=sql.connect("database.db") cur=con.cursor() cur.execute("DELETE from users") con.commit() con.close() def reset_data(): con=sql.connect('database.db') cur=con.cursor() cur.execute("DROP table if exists users") con.commit() con.close() if __name__=='__main__': choice=0 print("Create Table : ") choice=int(input()) if choice==1: createtbl() d=getPaths.main() for i in d[:5]: insert_db(i[0],i[1]) print(get_data()) plot.plot_graph(g) reset_data()
''' This is the entry point for the program, everything will happen through here ''' import fetch import input import plot import simplify data = 0 while data == 0: #Get the input from the user symbol = input.get_input() #Fetch the data from Google Finance if symbol: data = fetch.get_data(symbol) #Simplify the data from Google simplified_Data = simplify.simplify_data(data) #Plot the graph of the stock price over time plot.plot_graph(simplified_Data)
from handleInput import check_type_of_input, BadInputException from graph import Graph from plot import plot_graph if __name__ == "__main__": with open('input/input.txt', 'r') as graph_input: try: graph_input = graph_input.readlines() input_type = check_type_of_input(graph_input) graph = Graph.create_graph_representation(input_type, graph_input) plot_graph(graph) except BadInputException: print(BadInputException)