'dependency': (0, None, 0), #Shape, Location, Scale 'functions': ('exp3', None, 'power3'), #Shape, Location, Scale 'min_datapoints_for_fit': 50 } # Fit the model to the data. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) dist0 = fit.mul_var_dist.distributions[0] fig = plt.figure(figsize=(12.5, 3.5), dpi=150) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) plot_marginal_fit(sample_hs, dist0, fig=fig, ax=ax1, label='$h_s$ (m)', dataset_char=DATASET_CHAR) plot_dependence_functions(fit=fit, fig=fig, ax1=ax2, ax2=ax3, unconditonal_variable_label=label_hs) fig.suptitle('Dataset ' + DATASET_CHAR) fig.subplots_adjust(wspace=0.25, bottom=0.15) # Compute highest density contours with return periods of 0.01, 0.1 and 20 years. ts = 1 # Sea state duration in hours. limits = [(0, 20), (0, 20)] # Limits of the computational domain. deltas = [0.2, 0.2] # Dimensions of the grid cells.
'name': 'Lognormal_SigmaMu', 'dependency': (0, None, 0), #Shape, Location, Scale 'functions': ('exp3', None, 'power3') #Shape, Location, Scale } # Fit the model to the data. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) dist0 = fit.mul_var_dist.distributions[0] print('First variable: ' + dist0.name + ' with ' + ' scale: ' + str(dist0.scale) + ', ' + ' shape: ' + str(dist0.shape) + ', ' + ' location: ' + str(dist0.loc)) print('Second variable: ' + str(fit.mul_var_dist.distributions[1])) fig = plt.figure(figsize=(10, 5), dpi=150) plot_marginal_fit(sample_hs, dist0, fig=fig, label='Significant wave height (m)') fig.suptitle('Dataset ' + DATASET_CHAR) fig = plt.figure(figsize=(6, 5), dpi=150) plot_dependence_functions(fit=fit, fig=fig, unconditonal_variable_label=label_hs) fig.suptitle('Dataset ' + DATASET_CHAR) # Compute IFORM-contours with return periods of 1 and 20 years. return_period_1 = 1 iform_contour_1 = IFormContour(fit.mul_var_dist, return_period_1, 1, 100) return_period_20 = 20 iform_contour_20 = IFormContour(fit.mul_var_dist, return_period_20, 1, 100)
# shape, location, scale, shape2 'min_datapoints_for_fit': 50, 'do_use_weights_for_dependence_function': True} # Fit the model to the data. fit = Fit((sample_v, sample_hs), (dist_description_v, dist_description_hs)) dist0 = fit.mul_var_dist.distributions[0] fig = plt.figure(figsize=(12.5, 3.5), dpi=150) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) plot_marginal_fit(sample_v, dist0, fig=fig, ax=ax1, label='$v$ (m s$^{-1}$)', dataset_char=DATASET_CHAR) plot_dependence_functions(fit=fit, fig=fig, ax1=ax2, ax2=ax3, unconditonal_variable_label=label_v) fig.suptitle('Dataset ' + DATASET_CHAR) fig.subplots_adjust(wspace=0.25, bottom=0.15) # Compute highest density contours with return periods of 0.01, 1 and 50 years. ts = 1 # Sea state duration in hours. limits = [(0, 45), (0, 20)] # Limits of the computational domain. deltas = [0.05, 0.05] # Dimensions of the grid cells. return_period_lowest = 0.01 hdc_contour_lowest = HDC(fit.mul_var_dist, return_period_lowest, ts, limits, deltas) return_period_1 = 1 hdc_contour_1 = HDC(fit.mul_var_dist, return_period_1, ts, limits, deltas) return_period_50 = 50 hdc_contour_50 = HDC(fit.mul_var_dist, return_period_50, ts, limits, deltas)