def plotFunctionApproximatorTrainingFromDirectory(directory,ax,ax2=None): """Load data related to function approximator training from a directory and plot it.""" if ax2 != None: plotLocallyWeightedLinesFromDirectory(directory,ax2) else: plotLocallyWeightedLinesFromDirectory(directory,ax) plotDataFromDirectory(directory,ax)
def plotFunctionApproximatorTrainingFromDirectory(directory,ax): """Load data related to function approximator training from a directory and plot it.""" plotDataFromDirectory(directory,ax) data_read_successfully = True cur_directory_number=0 while (data_read_successfully): cur_dir = directory+'/perturbation'+str(cur_directory_number)+'/' data_read_successfully = plotLocallyWeightedLinesFromDirectory(cur_dir,ax) cur_directory_number+=1
def plotFunctionApproximatorTrainingFromDirectory(directory,ax): """zzz.""" plotDataFromDirectory(directory,ax) data_read_successfully = True cur_directory_number=0 while (data_read_successfully): cur_dir = directory+'/perturbation'+str(cur_directory_number)+'/' data_read_successfully = plotLocallyWeightedLinesFromDirectory(cur_dir,ax) cur_directory_number+=1
def plotFunctionApproximatorTrainingFromDirectory(directory, ax): """zzz.""" plotDataFromDirectory(directory, ax) data_read_successfully = True cur_directory_number = 0 while data_read_successfully: cur_dir = directory + "/perturbation" + str(cur_directory_number) + "/" data_read_successfully = plotLocallyWeightedLinesFromDirectory(cur_dir, ax) cur_directory_number += 1
from plotLocallyWeightedLines import plotLocallyWeightedLinesFromDirectory if __name__=='__main__': executable = "../../../bin_test/testBasisFunctionsLWR" if (not os.path.isfile(executable)): print "" print "ERROR: Executable '"+executable+"' does not exist." print "Please call 'make install' in the build directory first." print "" sys.exit(-1); # Call the executable with the directory to which results should be written directory = "/tmp/testBasisFunctionsLWR" subprocess.call([executable, directory]) # Plot the results in each directory fig = plt.figure() subplot_number = 1; for sym_label in ["symmetric","Asymmetric"]: ax = fig.add_subplot(1,2,subplot_number) subplot_number += 1; directory_fa = directory +"/1D_" + sym_label plotDataFromDirectory(directory_fa,ax) plotLocallyWeightedLinesFromDirectory(directory_fa,ax) #ax.legend(['targets','predictions']) ax.set_title(sym_label) plt.show()
sys.exit(-1); # Call the executable with the directory to which results should be written directory = "/tmp/demoTrainFunctionApproximators" subprocess.call([executable, directory]) # Plot the results in each directory function_approximator_names = ["LWR","LWPR","GMR","IRFRLS"] fig = plt.figure() subplot_number = 1; for name in function_approximator_names: ax = fig.add_subplot(1,len(function_approximator_names),subplot_number) subplot_number += 1; directory_fa = directory +"/"+ name try: plotDataFromDirectory(directory_fa,ax) if (name=="LWR" or name=="LWPR"): plotLocallyWeightedLinesFromDirectory(directory_fa,ax) ax.set_ylim(-1.0,1.5) except IOError: print "WARNING: Could not find data for function approximator "+name ax.set_title(name) ax.legend(['targets','predictions']) plt.show()
executable = "../../../bin_test/testLeastSquares" if (not os.path.isfile(executable)): print("") print("ERROR: Executable '" + executable + "' does not exist.") print("Please call 'make install' in the build directory first.") print("") sys.exit(-1) fig_number = 1 directory = "/tmp/testLeastSquares/" # Call the executable with the directory to which results should be written command = executable + " " + directory print(command) subprocess.call(command, shell=True) for dim in [1, 2]: fig = plt.figure(fig_number, figsize=(15, 5)) fig_number = fig_number + 1 if (dim == 1): ax = fig.add_subplot(1, 1, 1) else: ax = fig.add_subplot(1, 1, 1, projection='3d') cur_directory = directory + "/" + str(dim) + "D" plotDataFromDirectory(cur_directory, ax) plt.show()
def plotFunctionApproximatorTrainingFromDirectory(directory, ax): """zzz.""" plotLocallyWeightedLinesFromDirectory(directory, ax) plotDataFromDirectory(directory, ax)
else: ax.set_xlabel('input_1'); ax.set_ylabel('input_2'); ax.set_zlabel('output'); return True; if __name__=='__main__': """Pass a directory argument, read inputs, targets and predictions from that directory, and plot.""" if (len(sys.argv)==2): directory = str(sys.argv[1]) else: print '\nUsage: '+sys.argv[0]+' <directory> (data is read from directory)\n'; sys.exit() fig = plt.figure() if (getDataDimFromDirectory(directory)==1): ax = fig.gca() else: ax = Axes3D(fig) plotDataFromDirectory(directory,ax) plotLocallyWeightedLinesFromDirectory(directory,ax) plt.show()
if (n_dims == 1): ax.set_xlabel('input') ax.set_ylabel('output') else: ax.set_xlabel('input_1') ax.set_ylabel('input_2') ax.set_zlabel('output') return True if __name__ == '__main__': """Pass a directory argument, read inputs, targets and predictions from that directory, and plot.""" if (len(sys.argv) == 2): directory = str(sys.argv[1]) else: print '\nUsage: ' + sys.argv[ 0] + ' <directory> (data is read from directory)\n' sys.exit() fig = plt.figure() if (getDataDimFromDirectory(directory) == 1): ax = fig.gca() else: ax = Axes3D(fig) plotDataFromDirectory(directory, ax) plotLocallyWeightedLinesFromDirectory(directory, ax) plt.show()
def plotFunctionApproximatorTrainingFromDirectory(directory,ax): """zzz.""" plotLocallyWeightedLinesFromDirectory(directory,ax) plotDataFromDirectory(directory,ax)