def solve_Multiscale_PDE(R): log_out_path = R['FolderName'] # 将路径从字典 R 中提取出来 if not os.path.exists(log_out_path): # 判断路径是否已经存在 os.mkdir(log_out_path) # 无 log_out_path 路径,创建一个 log_out_path 路径 logfile_name = '%s%s.txt' % ('log2', R['name2act_hidden']) log_fileout = open(os.path.join(log_out_path, logfile_name), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 DNN_Log_Print.dictionary_out2file(R, log_fileout) # 一般 laplace 问题需要的设置 batchsize_it = R['batch_size2interior'] batchsize_bd = R['batch_size2boundary'] bd_penalty_init = R[ 'init_boundary_penalty'] # Regularization parameter for boundary conditions penalty2WB = R[ 'penalty2weight_biases'] # Regularization parameter for weights and biases lr_decay = R['learning_rate_decay'] learning_rate = R['learning_rate'] hidden_layers = R['hidden_layers'] input_dim = R['input_dim'] out_dim = R['output_dim'] act_func = R['name2act_hidden'] # p laplace 问题需要的额外设置, 先预设一下 p_index = R['order2pLaplace_operator'] mesh_number = 2 region_lb = 0.0 region_rt = 1.0 if R['PDE_type'] == 'general_Laplace': # -laplace u = f region_lb = 0.0 region_rt = 1.0 f, u_true, u00, u01, u10, u11, u20, u21, u30, u31, u40, u41 = General_Laplace.get_infos2Laplace_5D( input_dim=input_dim, out_dim=out_dim, intervalL=region_lb, intervalR=region_rt, equa_name=R['equa_name']) elif R['PDE_type'] == 'pLaplace': region_lb = 0.0 region_rt = 1.0 u_true, f, A_eps, u00, u01, u10, u11, u20, u21, u30, u31, u40, u41 = MS_LaplaceEqs.get_infos2pLaplace_5D( input_dim=input_dim, out_dim=out_dim, intervalL=0.0, intervalR=1.0, equa_name=R['equa_name']) elif R['PDE_type'] == 'Possion_Boltzmann': region_lb = 0.0 region_rt = 1.0 u_true, f, A_eps, kappa, u00, u01, u10, u11, u20, u21, u30, u31, u40, u41 = MS_BoltzmannEqs.get_infos2Boltzmann_5D( input_dim=input_dim, out_dim=out_dim, intervalL=0.0, intervalR=1.0, equa_name=R['equa_name']) flag = 'WB2NN' if R['model2NN'] == 'DNN_FourierBase': W2NN, B2NN = DNN_base.Xavier_init_NN_Fourier(input_dim, out_dim, hidden_layers, flag) else: W2NN, B2NN = DNN_base.Xavier_init_NN(input_dim, out_dim, hidden_layers, flag) global_steps = tf.compat.v1.Variable(0, trainable=False) with tf.device('/gpu:%s' % (R['gpuNo'])): with tf.compat.v1.variable_scope('vscope', reuse=tf.compat.v1.AUTO_REUSE): XYZST_it = tf.compat.v1.placeholder(tf.float32, name='XYZST_it', shape=[None, input_dim]) XYZST00 = tf.compat.v1.placeholder(tf.float32, name='XYZST00', shape=[None, input_dim]) XYZST01 = tf.compat.v1.placeholder(tf.float32, name='XYZST01', shape=[None, input_dim]) XYZST10 = tf.compat.v1.placeholder(tf.float32, name='XYZST10', shape=[None, input_dim]) XYZST11 = tf.compat.v1.placeholder(tf.float32, name='XYZST11', shape=[None, input_dim]) XYZST20 = tf.compat.v1.placeholder(tf.float32, name='XYZST20', shape=[None, input_dim]) XYZST21 = tf.compat.v1.placeholder(tf.float32, name='XYZST21', shape=[None, input_dim]) XYZST30 = tf.compat.v1.placeholder(tf.float32, name='XYZST30', shape=[None, input_dim]) XYZST31 = tf.compat.v1.placeholder(tf.float32, name='XYZST31', shape=[None, input_dim]) XYZST40 = tf.compat.v1.placeholder(tf.float32, name='XYZST40', shape=[None, input_dim]) XYZST41 = tf.compat.v1.placeholder(tf.float32, name='XYZST41', shape=[None, input_dim]) boundary_penalty = tf.compat.v1.placeholder_with_default( input=1e3, shape=[], name='bd_p') in_learning_rate = tf.compat.v1.placeholder_with_default( input=1e-5, shape=[], name='lr') # 供选择的网络模式 if R['model2NN'] == 'DNN': UNN = DNN_base.DNN(XYZST_it, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U00_NN = DNN_base.DNN(XYZST00, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U01_NN = DNN_base.DNN(XYZST01, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U10_NN = DNN_base.DNN(XYZST10, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U11_NN = DNN_base.DNN(XYZST11, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U20_NN = DNN_base.DNN(XYZST20, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U21_NN = DNN_base.DNN(XYZST21, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U30_NN = DNN_base.DNN(XYZST30, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U31_NN = DNN_base.DNN(XYZST31, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U40_NN = DNN_base.DNN(XYZST40, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U41_NN = DNN_base.DNN(XYZST41, W2NN, B2NN, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) elif R['model2NN'] == 'DNN_scale': UNN = DNN_base.DNN_scale(XYZST_it, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U00_NN = DNN_base.DNN_scale(XYZST00, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U01_NN = DNN_base.DNN_scale(XYZST01, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U10_NN = DNN_base.DNN_scale(XYZST10, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U11_NN = DNN_base.DNN_scale(XYZST11, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U20_NN = DNN_base.DNN_scale(XYZST20, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U21_NN = DNN_base.DNN_scale(XYZST21, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U30_NN = DNN_base.DNN_scale(XYZST30, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U31_NN = DNN_base.DNN_scale(XYZST31, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U40_NN = DNN_base.DNN_scale(XYZST40, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U41_NN = DNN_base.DNN_scale(XYZST41, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) elif R['model2NN'] == 'DNN_adapt_scale': UNN = DNN_base.DNN_adapt_scale( XYZST_it, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U00_NN = DNN_base.DNN_adapt_scale( XYZST00, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U01_NN = DNN_base.DNN_adapt_scale( XYZST01, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U10_NN = DNN_base.DNN_adapt_scale( XYZST10, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U11_NN = DNN_base.DNN_adapt_scale( XYZST11, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U20_NN = DNN_base.DNN_adapt_scale( XYZST20, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U21_NN = DNN_base.DNN_adapt_scale( XYZST21, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U30_NN = DNN_base.DNN_adapt_scale( XYZST30, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U31_NN = DNN_base.DNN_adapt_scale( XYZST31, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U40_NN = DNN_base.DNN_adapt_scale( XYZST40, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) U41_NN = DNN_base.DNN_adapt_scale( XYZST41, W2NN, B2NN, hidden_layers, R['freq'], activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden']) elif R['model2NN'] == 'DNN_FourierBase': UNN = DNN_base.DNN_FourierBase( XYZST_it, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U00_NN = DNN_base.DNN_FourierBase( XYZST00, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U01_NN = DNN_base.DNN_FourierBase( XYZST01, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U10_NN = DNN_base.DNN_FourierBase( XYZST10, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U11_NN = DNN_base.DNN_FourierBase( XYZST11, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U20_NN = DNN_base.DNN_FourierBase( XYZST20, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U21_NN = DNN_base.DNN_FourierBase( XYZST21, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U30_NN = DNN_base.DNN_FourierBase( XYZST30, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U31_NN = DNN_base.DNN_FourierBase( XYZST31, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U40_NN = DNN_base.DNN_FourierBase( XYZST40, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) U41_NN = DNN_base.DNN_FourierBase( XYZST41, W2NN, B2NN, hidden_layers, R['freq'], activate_name=R['name2act_hidden'], sFourier=R['sfourier']) X_it = tf.reshape(XYZST_it[:, 0], shape=[-1, 1]) Y_it = tf.reshape(XYZST_it[:, 1], shape=[-1, 1]) Z_it = tf.reshape(XYZST_it[:, 2], shape=[-1, 1]) S_it = tf.reshape(XYZST_it[:, 3], shape=[-1, 1]) T_it = tf.reshape(XYZST_it[:, 4], shape=[-1, 1]) dUNN = tf.gradients(UNN, XYZST_it)[0] # * 行 2 列 # 变分形式的loss of interior,训练得到的 UNN 是 * 行 1 列, 因为 一个点对(x,y) 得到一个 u 值 if R['loss_type'] == 'variational_loss': dUNN_Norm = tf.reshape(tf.sqrt( tf.reduce_sum(tf.square(dUNN), axis=-1)), shape=[-1, 1]) # 按行求和 if R['PDE_type'] == 'general_Laplace': dUNN_2Norm = tf.square(dUNN_Norm) loss_it_variational = (1.0 / 2) * dUNN_2Norm - tf.multiply( f(X_it, Y_it, Z_it, S_it, T_it), UNN) elif R['PDE_type'] == 'pLaplace': a_eps = A_eps(X_it, Y_it, Z_it, S_it, T_it) # * 行 1 列 AdUNN_pNorm = a_eps * tf.pow(dUNN_Norm, p_index) if R['equa_name'] == 'multi_scale5D_4' or R['equa_name'] == 'multi_scale5D_5' or \ R['equa_name'] == 'multi_scale5D_6' or R['equa_name'] == 'multi_scale5D_7': fxyzst = MS_LaplaceEqs.get_forceSide2pLaplace5D( x=X_it, y=Y_it, z=Z_it, s=S_it, t=T_it, equa_name=R['equa_name']) loss_it_variational = ( 1.0 / p_index) * AdUNN_pNorm - tf.multiply( tf.reshape(fxyzst, shape=[-1, 1]), UNN) else: loss_it_variational = ( 1.0 / p_index) * AdUNN_pNorm - tf.multiply( f(X_it, Y_it, Z_it, S_it, T_it), UNN) elif R['PDE_type'] == 'Possion_Boltzmann': a_eps = A_eps(X_it, Y_it, Z_it, S_it, T_it) # * 行 1 列 AdUNN_pNorm = a_eps * tf.pow(dUNN_Norm, p_index) Kappa = np.pi * np.pi # Kappa = kappa(X_it, Y_it, Z_it, S_it, T_it) if R['equa_name'] == 'multi_scale5D_4' or R['equa_name'] == 'multi_scale5D_5' or \ R['equa_name'] == 'multi_scale5D_6' or R['equa_name'] == 'multi_scale5D_7': fxyzst = MS_BoltzmannEqs.get_forceSide2Boltzmann_5D( x=X_it, y=Y_it, z=Z_it, s=S_it, t=T_it, equa_name=R['equa_name']) loss_it_variational = (1.0 / p_index) * ( AdUNN_pNorm + Kappa * UNN * UNN) - tf.multiply( fxyzst, UNN) else: loss_it_variational = (1.0 / p_index) * (AdUNN_pNorm + Kappa*UNN*UNN) - \ tf.multiply(f(X_it, Y_it, Z_it, S_it, T_it), UNN) loss_it = tf.reduce_mean(loss_it_variational) U_00 = tf.constant(0.0) U_01 = tf.constant(0.0) U_10 = tf.constant(0.0) U_11 = tf.constant(0.0) U_20 = tf.constant(0.0) U_21 = tf.constant(0.0) U_30 = tf.constant(0.0) U_31 = tf.constant(0.0) U_40 = tf.constant(0.0) U_41 = tf.constant(0.0) loss_bd_square2NN = tf.square(U00_NN - U_00) + tf.square(U01_NN - U_01) + tf.square(U10_NN - U_10) + \ tf.square(U11_NN - U_11) + tf.square(U20_NN - U_20) + tf.square(U21_NN - U_21) + \ tf.square(U30_NN - U_30) + tf.square(U31_NN - U_31) + tf.square(U40_NN - U_40) + \ tf.square(U41_NN - U_41) loss_bd = tf.reduce_mean(loss_bd_square2NN) if R['regular_wb_model'] == 'L1': regularSum2WB = DNN_base.regular_weights_biases_L1( W2NN, B2NN) # 正则化权重和偏置 L1正则化 elif R['regular_wb_model'] == 'L2': regularSum2WB = DNN_base.regular_weights_biases_L2( W2NN, B2NN) # 正则化权重和偏置 L2正则化 else: regularSum2WB = tf.constant(0.0) # 无正则化权重参数 PWB = penalty2WB * regularSum2WB loss = loss_it + boundary_penalty * loss_bd + PWB # 要优化的loss function my_optimizer = tf.train.AdamOptimizer(in_learning_rate) if R['train_model'] == 'group3_training': train_op1 = my_optimizer.minimize(loss_it, global_step=global_steps) train_op2 = my_optimizer.minimize(loss_bd, global_step=global_steps) train_op3 = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.group(train_op1, train_op2, train_op3) elif R['train_model'] == 'group2_training': train_op2bd = my_optimizer.minimize(loss_bd, global_step=global_steps) train_op2union = my_optimizer.minimize( loss, global_step=global_steps) train_my_loss = tf.group(train_op2union, train_op2bd) elif R['train_model'] == 'union_training': train_my_loss = my_optimizer.minimize(loss, global_step=global_steps) if R['PDE_type'] == 'general_Laplace' or R[ 'PDE_type'] == 'pLaplace' or R[ 'PDE_type'] == 'Possion_Boltzmann': # 训练上的真解值和训练结果的误差 U_true = u_true(X_it, Y_it, Z_it, S_it, T_it) train_mse = tf.reduce_mean(tf.square(U_true - UNN)) train_rel = train_mse / tf.reduce_mean(tf.square(U_true)) else: train_mse = tf.constant(0.0) train_rel = tf.constant(0.0) t0 = time.time() loss_it_all, loss_bd_all, loss_all, train_mse_all, train_rel_all = [], [], [], [], [] # 空列表, 使用 append() 添加元素 test_mse_all, test_rel_all = [], [] test_epoch = [] # 画网格解图 if R['testData_model'] == 'random_generate': # 生成测试数据,用于测试训练后的网络 # test_bach_size = 400 # size2test = 20 # test_bach_size = 900 # size2test = 30 test_bach_size = 1600 size2test = 40 # test_bach_size = 4900 # size2test = 70 # test_bach_size = 10000 # size2test = 100 test_xyzst_bach = DNN_data.rand_it(test_bach_size, input_dim, region_lb, region_rt) saveData.save_testData_or_solus2mat(test_xyzst_bach, dataName='testXYZST', outPath=R['FolderName']) elif R['testData_model'] == 'loadData': test_bach_size = 1600 size2test = 40 mat_data_path = 'dataMat_highDim' test_xyzst_bach = Load_data2Mat.get_randomData2mat( dim=input_dim, data_path=mat_data_path) saveData.save_testData_or_solus2mat(test_xyzst_bach, dataName='testXYZST', outPath=R['FolderName']) # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了 config = tf.ConfigProto(allow_soft_placement=True) # 创建sess的时候对sess进行参数配置 config.gpu_options.allow_growth = True # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。 config.allow_soft_placement = True # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行 with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) tmp_lr = learning_rate for i_epoch in range(R['max_epoch'] + 1): xyzst_it_batch = DNN_data.rand_it(batchsize_it, input_dim, region_a=region_lb, region_b=region_rt) xyzst00_batch, xyzst01_batch, xyzst10_batch, xyzst11_batch, xyzst20_batch, xyzst21_batch, xyzst30_batch, \ xyzst31_batch, xyzst40_batch, xyzst41_batch = DNN_data.rand_bd_5D(batchsize_bd, input_dim, region_a=region_lb, region_b=region_rt) tmp_lr = tmp_lr * (1 - lr_decay) if R['activate_penalty2bd_increase'] == 1: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_bd = bd_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_bd = 10 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_bd = 50 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_bd = 100 * bd_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_bd = 200 * bd_penalty_init else: temp_penalty_bd = 500 * bd_penalty_init elif R['activate_penalty2bd_increase'] == 2: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_bd = 5 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_bd = 1 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_bd = 0.5 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_bd = 0.1 * bd_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_bd = 0.05 * bd_penalty_init else: temp_penalty_bd = 0.02 * bd_penalty_init else: temp_penalty_bd = bd_penalty_init _, loss_it_tmp, loss_bd_tmp, loss_tmp, train_mse_tmp, train_rel_tmp, pwb = sess.run( [ train_my_loss, loss_it, loss_bd, loss, train_mse, train_rel, PWB ], feed_dict={ XYZST_it: xyzst_it_batch, XYZST00: xyzst00_batch, XYZST01: xyzst01_batch, XYZST10: xyzst10_batch, XYZST11: xyzst11_batch, XYZST20: xyzst20_batch, XYZST21: xyzst21_batch, XYZST30: xyzst30_batch, XYZST31: xyzst31_batch, XYZST40: xyzst40_batch, XYZST41: xyzst41_batch, in_learning_rate: tmp_lr, boundary_penalty: temp_penalty_bd }) loss_it_all.append(loss_it_tmp) loss_bd_all.append(loss_bd_tmp) loss_all.append(loss_tmp) train_mse_all.append(train_mse_tmp) train_rel_all.append(train_rel_tmp) if i_epoch % 1000 == 0: run_times = time.time() - t0 DNN_Log_Print.print_and_log_train_one_epoch( i_epoch, run_times, tmp_lr, temp_penalty_bd, pwb, loss_it_tmp, loss_bd_tmp, loss_tmp, train_mse_tmp, train_rel_tmp, log_out=log_fileout) # --------------------------- test network ---------------------------------------------- test_epoch.append(i_epoch / 1000) train_option = False if R['PDE_type'] == 'general_laplace' or R[ 'PDE_type'] == 'pLaplace' or R[ 'PDE_type'] == 'Possion_Boltzmann': u_true2test, u_nn2test = sess.run( [U_true, UNN], feed_dict={XYZST_it: test_xyzst_bach}) else: u_true2test = u_true u_nn2test = sess.run(UNN, feed_dict={XYZST_it: test_xyzst_bach}) point_square_error = np.square(u_true2test - u_nn2test) mse2test = np.mean(point_square_error) test_mse_all.append(mse2test) res2test = mse2test / np.mean(np.square(u_true2test)) test_rel_all.append(res2test) DNN_Log_Print.print_and_log_test_one_epoch(mse2test, res2test, log_out=log_fileout) # ------------------- save the testing results into mat file and plot them ------------------------- saveData.save_trainLoss2mat_1actFunc(loss_it_all, loss_bd_all, loss_all, actName=act_func, outPath=R['FolderName']) saveData.save_train_MSE_REL2mat(train_mse_all, train_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_it_all, lossType='loss_it', seedNo=R['seed'], outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_bd_all, lossType='loss_bd', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_all, lossType='loss', seedNo=R['seed'], outPath=R['FolderName']) saveData.save_train_MSE_REL2mat(train_mse_all, train_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_MSE_REL_1act_func(train_mse_all, train_rel_all, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) # ---------------------- save testing results to mat files, then plot them -------------------------------- saveData.save_2testSolus2mat(u_true2test, u_nn2test, actName='utrue', actName1=act_func, outPath=R['FolderName']) # 绘制解的热力图(真解和DNN解) plotData.plot_Hot_solution2test(u_true2test, size_vec2mat=size2test, actName='Utrue', seedNo=R['seed'], outPath=R['FolderName']) plotData.plot_Hot_solution2test(u_nn2test, size_vec2mat=size2test, actName=act_func, seedNo=R['seed'], outPath=R['FolderName']) saveData.save_testMSE_REL2mat(test_mse_all, test_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTest_MSE_REL(test_mse_all, test_rel_all, test_epoch, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) saveData.save_test_point_wise_err2mat(point_square_error, actName=act_func, outPath=R['FolderName']) plotData.plot_Hot_point_wise_err(point_square_error, size_vec2mat=size2test, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'])
def solve_Multiscale_PDE(R): log_out_path = R['FolderName'] # 将路径从字典 R 中提取出来 if not os.path.exists(log_out_path): # 判断路径是否已经存在 os.mkdir(log_out_path) # 无 log_out_path 路径,创建一个 log_out_path 路径 outfile_name1 = '%s%s.txt' % ('log2', 'train') log_fileout_NN = open(os.path.join(log_out_path, outfile_name1), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 dictionary_out2file(R, log_fileout_NN, actName2normal=R['act_name2NN1'], actName2scale=R['act_name2NN2']) # laplace 问题需要的设置 batchsize_it = R['batch_size2interior'] batchsize_bd = R['batch_size2boundary'] bd_penalty_init = R[ 'init_boundary_penalty'] # Regularization parameter for boundary conditions lr_decay = R['learning_rate_decay'] learning_rate = R['learning_rate'] init_penalty2powU = R['balance2solus'] hidden2normal = R['hidden2normal'] hidden2scale = R['hidden2scale'] wb_regular = R[ 'regular_weight_biases'] # Regularization parameter for weights and biases # ------- set the problem --------- input_dim = R['input_dim'] out_dim = R['output_dim'] act_func1 = R['act_name2NN1'] act_func2 = R['act_name2NN2'] region_l = 0.0 region_r = 1.0 if R['PDE_type'] == 'general_laplace': # -laplace u = f region_l = 0.0 region_r = 1.0 f, u_true, u_left, u_right = laplace_eqs1d.get_laplace_infos( input_dim=input_dim, out_dim=out_dim, left_bottom=region_l, right_top=region_r, laplace_name=R['equa_name']) elif R['PDE_type'] == 'p_laplace': # 求解如下方程, A_eps(x) 震荡的比较厉害,具有多个尺度 # d **** d **** # - ---- | A_eps(x)* ---- u_eps(x) | =f(x), x \in R^n # dx **** dx **** # 问题区域,每个方向设置为一样的长度。等网格划分,对于二维是方形区域 p_index = R['order2laplace'] epsilon = R['epsilon'] if 2 == p_index: region_l = 0.0 region_r = 1.0 u_true, f, A_eps, u_left, u_right = pLaplace_eqs1d.get_infos_2laplace( in_dim=input_dim, out_dim=out_dim, region_a=region_l, region_b=region_r, p=p_index, eps=epsilon) elif 3 == p_index: region_l = 0.0 region_r = 1.0 u_true, f, A_eps, u_left, u_right = pLaplace_eqs1d.get_infos_3laplace( in_dim=input_dim, out_dim=out_dim, region_a=region_l, region_b=region_r, p=p_index, eps=epsilon) elif 5 == p_index: region_l = 0.0 region_r = 1.0 u_true, f, A_eps, u_left, u_right = pLaplace_eqs1d.get_infos_5laplace( in_dim=input_dim, out_dim=out_dim, region_a=region_l, region_b=region_r, p=p_index, eps=epsilon) elif 8 == p_index: region_l = 0.0 region_r = 1.0 u_true, f, A_eps, u_left, u_right = pLaplace_eqs1d.get_infos_8laplace( in_dim=input_dim, out_dim=out_dim, region_a=region_l, region_b=region_r, p=p_index, eps=epsilon) else: region_l = 0.0 region_r = 1.0 u_true, f, A_eps, u_left, u_right = pLaplace_eqs1d.get_infos_pLaplace( in_dim=input_dim, out_dim=out_dim, region_a=region_l, region_b=region_r, p=p_index, eps=epsilon, eqs_name=R['equa_name']) # 初始化权重和和偏置的模式 if R['weight_biases_model'] == 'general_model': flag_normal = 'WB_NN2normal' flag_scale = 'WB_NN2scale' # Weights, Biases = PDE_DNN_base.Initial_DNN2different_hidden(input_dim, out_dim, hidden_layers, flag) # Weights, Biases = laplace_DNN1d_base.initialize_NN_xavier(input_dim, out_dim, hidden_layers, flag1) # Weights, Biases = laplace_DNN1d_base.initialize_NN_random_normal(input_dim, out_dim, hidden_layers, flag1) if R['model2normal'] == 'PDE_DNN_Cos_C_Sin_Base' or R[ 'model2normal'] == 'DNN_adaptCosSin_Base': W2NN_Normal, B2NN_Normal = DNN_base.initialize_NN_random_normal2_CS( input_dim, out_dim, hidden2normal, flag_normal) else: W2NN_Normal, B2NN_Normal = DNN_base.initialize_NN_random_normal2( input_dim, out_dim, hidden2normal, flag_normal) if R['model2scale'] == 'PDE_DNN_Cos_C_Sin_Base' or R[ 'model2scale'] == 'DNN_adaptCosSin_Base': W2NN_freqs, B2NN_freqs = DNN_base.initialize_NN_random_normal2_CS( input_dim, out_dim, hidden2scale, flag_scale) else: W2NN_freqs, B2NN_freqs = DNN_base.initialize_NN_random_normal2( input_dim, out_dim, hidden2scale, flag_scale) global_steps = tf.Variable(0, trainable=False) with tf.device('/gpu:%s' % (R['gpuNo'])): with tf.variable_scope('vscope', reuse=tf.AUTO_REUSE): X_it = tf.placeholder(tf.float32, name='X_it', shape=[None, input_dim]) # * 行 1 列 X_left_bd = tf.placeholder(tf.float32, name='X_left_bd', shape=[None, input_dim]) # * 行 1 列 X_right_bd = tf.placeholder(tf.float32, name='X_right_bd', shape=[None, input_dim]) # * 行 1 列 bd_penalty = tf.placeholder_with_default(input=1e3, shape=[], name='bd_p') penalty2powU = tf.placeholder_with_default(input=1.0, shape=[], name='p_powU') in_learning_rate = tf.placeholder_with_default(input=1e-5, shape=[], name='lr') train_opt = tf.placeholder_with_default(input=True, shape=[], name='train_opt') if R['model2normal'] == 'PDE_DNN': U_NN_Normal = DNN_base.PDE_DNN(X_it, W2NN_Normal, B2NN_Normal, hidden2normal, activate_name=act_func1) ULeft_NN_Normal = DNN_base.PDE_DNN(X_left_bd, W2NN_Normal, B2NN_Normal, hidden2normal, activate_name=act_func1) URight_NN_Normal = DNN_base.PDE_DNN(X_right_bd, W2NN_Normal, B2NN_Normal, hidden2normal, activate_name=act_func1) elif R['model2normal'] == 'PDE_DNN_Cos_C_Sin_Base': freq = [1] U_NN_Normal = DNN_base.PDE_DNN_Cos_C_Sin_Base( X_it, W2NN_Normal, B2NN_Normal, hidden2normal, freq, activate_name=act_func1) ULeft_NN_Normal = DNN_base.PDE_DNN_Cos_C_Sin_Base( X_left_bd, W2NN_Normal, B2NN_Normal, hidden2normal, freq, activate_name=act_func1) URight_NN_Normal = DNN_base.PDE_DNN_Cos_C_Sin_Base( X_right_bd, W2NN_Normal, B2NN_Normal, hidden2normal, freq, activate_name=act_func1) elif R['model2normal'] == 'DNN_adaptCosSin_Base': freq = [1] U_NN_Normal = DNN_base.DNN_adaptCosSin_Base( X_it, W2NN_Normal, B2NN_Normal, hidden2normal, freq, activate_name=act_func1) ULeft_NN_Normal = DNN_base.DNN_adaptCosSin_Base( X_left_bd, W2NN_Normal, B2NN_Normal, hidden2normal, freq, activate_name=act_func1) URight_NN_Normal = DNN_base.DNN_adaptCosSin_Base( X_right_bd, W2NN_Normal, B2NN_Normal, hidden2normal, freq, activate_name=act_func1) freqs = R['freqs'] if R['model2scale'] == 'PDE_DNN_scale': U_NN_freqs = DNN_base.PDE_DNN_scale(X_it, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) ULeft_NN_freqs = DNN_base.PDE_DNN_scale( X_left_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) URight_NN_freqs = DNN_base.PDE_DNN_scale( X_right_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) elif R['model2scale'] == 'PDE_DNN_adapt_scale': U_NN_freqs = DNN_base.PDE_DNN_adapt_scale( X_it, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) ULeft_NN_freqs = DNN_base.PDE_DNN_adapt_scale( X_left_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) URight_NN_freqs = DNN_base.PDE_DNN_adapt_scale( X_right_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) elif R['model2scale'] == 'PDE_DNN_FourierBase': U_NN_freqs = DNN_base.PDE_DNN_FourierBase( X_it, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) ULeft_NN_freqs = DNN_base.PDE_DNN_FourierBase( X_left_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) URight_NN_freqs = DNN_base.PDE_DNN_FourierBase( X_right_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) elif R['model2scale'] == 'PDE_DNN_Cos_C_Sin_Base': U_NN_freqs = DNN_base.PDE_DNN_Cos_C_Sin_Base( X_it, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) ULeft_NN_freqs = DNN_base.PDE_DNN_Cos_C_Sin_Base( X_left_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) URight_NN_freqs = DNN_base.PDE_DNN_Cos_C_Sin_Base( X_right_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) elif R['model2scale'] == 'DNN_adaptCosSin_Base': U_NN_freqs = DNN_base.DNN_adaptCosSin_Base( X_it, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) ULeft_NN_freqs = DNN_base.DNN_adaptCosSin_Base( X_left_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) URight_NN_freqs = DNN_base.DNN_adaptCosSin_Base( X_right_bd, W2NN_freqs, B2NN_freqs, hidden2scale, freqs, activate_name=act_func2) U_NN = U_NN_Normal + U_NN_freqs # 变分形式的loss of interior,训练得到的 U_NN1 是 * 行 1 列, 因为 一个点对(x,y) 得到一个 u 值 dU_NN_Normal = tf.gradients(U_NN_Normal, X_it)[0] # * 行 2 列 dU_NN_freqs = tf.gradients(U_NN_freqs, X_it)[0] # * 行 2 列 if R['variational_loss'] == 1: dU_NN = tf.add(dU_NN_Normal, dU_NN_freqs) if R['PDE_type'] == 'general_laplace': laplace_norm2NN = tf.reduce_sum(tf.square(dU_NN), axis=-1) loss_it_NN = (1.0 / 2) * tf.reshape(laplace_norm2NN, shape=[-1, 1]) - \ tf.multiply(tf.reshape(f(X_it), shape=[-1, 1]), U_NN) elif R['PDE_type'] == 'p_laplace': # a_eps = A_eps(X_it) # * 行 1 列 a_eps = 1 / (2 + tf.cos(2 * np.pi * X_it / epsilon)) laplace_p_pow2NN = tf.reduce_sum( a_eps * tf.pow(tf.abs(dU_NN), p_index), axis=-1) loss_it_NN = (1.0 / p_index) * tf.reshape(laplace_p_pow2NN, shape=[-1, 1]) - \ tf.multiply(tf.reshape(f(X_it), shape=[-1, 1]), U_NN) Loss_it2NN = tf.reduce_mean(loss_it_NN) * (region_r - region_l) if R['wavelet'] == 1: # |Uc*Uf|^2-->0 norm2UdU = tf.square(tf.multiply(U_NN_Normal, U_NN_freqs)) UNN_dot_UNN = tf.reduce_mean(norm2UdU, axis=0) elif R['wavelet'] == 2: # |a(x)*(grad Uc)*(grad Uf)|^2-->0 dU_dot_dU = tf.multiply(dU_NN_Normal, dU_NN_freqs) sum2dUdU = tf.reshape(tf.reduce_sum(dU_dot_dU, axis=-1), shape=[-1, 1]) norm2AdUdU = tf.square(tf.multiply(a_eps, sum2dUdU)) # norm2AdUdU = tf.square(sum2dUdU) UNN_dot_UNN = tf.reduce_mean(norm2AdUdU, axis=0) else: U_dot_U = tf.reduce_mean(tf.square( tf.multiply(U_NN_Normal, U_NN_freqs)), axis=0) dU_dot_dU = tf.multiply(dU_NN_Normal, dU_NN_freqs) sum2dUdU = tf.reshape(tf.reduce_sum(dU_dot_dU, axis=-1), shape=[-1, 1]) norm2AdUdU = tf.square(tf.multiply(a_eps, sum2dUdU)) UNN_dot_UNN = tf.reduce_mean(norm2AdUdU, axis=0) + U_dot_U elif R['variational_loss'] == 2: dU_NN = tf.add(dU_NN_Normal, dU_NN_freqs) if R['PDE_type'] == 'general_laplace': laplace_norm2NN = tf.reduce_sum(tf.square(dU_NN), axis=-1) loss_it_NN = (1.0 / 2) * tf.reshape(laplace_norm2NN, shape=[-1, 1]) - \ tf.multiply(tf.reshape(f(X_it), shape=[-1, 1]), U_NN) elif R['PDE_type'] == 'p_laplace': # a_eps = A_eps(X_it) # * 行 1 列 a_eps = 1 / (2 + tf.cos(2 * np.pi * X_it / epsilon)) laplace_p_pow2NN = tf.reduce_sum( a_eps * tf.pow(tf.abs(dU_NN), p_index), axis=-1) loss_it_NN = (1.0 / p_index) * tf.reshape(laplace_p_pow2NN, shape=[-1, 1]) - \ tf.multiply(tf.reshape(f(X_it), shape=[-1, 1]), U_NN) Loss_it2NN = tf.reduce_mean(loss_it_NN) * (region_r - region_l) if R['wavelet'] == 1: norm2UdU = tf.square(tf.multiply(U_NN_Normal, U_NN_freqs)) UNN_dot_UNN = tf.reduce_mean(norm2UdU, axis=0) else: UNN_dot_UNN = tf.constant(0.0) Loss2UNN_dot_UNN = penalty2powU * UNN_dot_UNN U_left = tf.reshape(u_left(X_left_bd), shape=[-1, 1]) U_right = tf.reshape(u_right(X_right_bd), shape=[-1, 1]) loss_bd_Normal = tf.square(ULeft_NN_Normal - U_left) + tf.square(URight_NN_Normal - U_right) loss_bd_Freqs = tf.square(ULeft_NN_freqs - U_left) + tf.square(URight_NN_freqs - U_right) Loss_bd2NN = tf.reduce_mean(loss_bd_Normal) + tf.reduce_mean( loss_bd_Freqs) if R['regular_weight_model'] == 'L1': regular_WB_Normal = DNN_base.regular_weights_biases_L1( W2NN_Normal, B2NN_Normal) # 正则化权重和偏置 L1正则化 regular_WB_Scale = DNN_base.regular_weights_biases_L1( W2NN_freqs, B2NN_freqs) # 正则化权重和偏置 L1正则化 elif R['regular_weight_model'] == 'L2': regular_WB_Normal = DNN_base.regular_weights_biases_L2( W2NN_Normal, B2NN_Normal) # 正则化权重和偏置 L2正则化 regular_WB_Scale = DNN_base.regular_weights_biases_L2( W2NN_freqs, B2NN_freqs) # 正则化权重和偏置 L2正则化 else: regular_WB_Normal = tf.constant(0.0) # 无正则化权重参数 regular_WB_Scale = tf.constant(0.0) penalty_Weigth_Bias = wb_regular * (regular_WB_Normal + regular_WB_Scale) Loss2NN = Loss_it2NN + bd_penalty * Loss_bd2NN + Loss2UNN_dot_UNN + penalty_Weigth_Bias my_optimizer = tf.train.AdamOptimizer(in_learning_rate) if R['variational_loss'] == 1: if R['train_group'] == 1: train_op1 = my_optimizer.minimize(Loss_it2NN, global_step=global_steps) train_op2 = my_optimizer.minimize(Loss_bd2NN, global_step=global_steps) train_op3 = my_optimizer.minimize(Loss2UNN_dot_UNN, global_step=global_steps) train_op4 = my_optimizer.minimize(Loss2NN, global_step=global_steps) train_Loss2NN = tf.group(train_op1, train_op2, train_op3, train_op4) elif R['train_group'] == 2: train_op1 = my_optimizer.minimize(Loss2NN, global_step=global_steps) train_op2 = my_optimizer.minimize(Loss_bd2NN, global_step=global_steps) train_op3 = my_optimizer.minimize(Loss2UNN_dot_UNN, global_step=global_steps) train_Loss2NN = tf.group(train_op1, train_op2, train_op3) else: train_Loss2NN = my_optimizer.minimize( Loss2NN, global_step=global_steps) elif R['variational_loss'] == 2: if R['train_group'] == 1: train_op1 = my_optimizer.minimize(Loss_it2NN, global_step=global_steps) train_op2 = my_optimizer.minimize(Loss_bd2NN, global_step=global_steps) train_op3 = my_optimizer.minimize(Loss2NN, global_step=global_steps) train_Loss2NN = tf.group(train_op1, train_op2, train_op3) elif R['train_group'] == 2: train_op1 = my_optimizer.minimize(Loss2NN, global_step=global_steps) train_op2 = my_optimizer.minimize(Loss_bd2NN, global_step=global_steps) train_Loss2NN = tf.group(train_op1, train_op2) else: train_Loss2NN = my_optimizer.minimize( Loss2NN, global_step=global_steps) # 训练上的真解值和训练结果的误差 U_true = u_true(X_it) train_mse_NN = tf.reduce_mean(tf.square(U_true - U_NN)) train_rel_NN = train_mse_NN / tf.reduce_mean(tf.square(U_true)) t0 = time.time() # 空列表, 使用 append() 添加元素 lossIt_all2NN, lossBD_all2NN, loss_all2NN, UDU_NN, train_mse_all2NN, train_rel_all2NN = [], [], [], [], [], [] test_mse_all2NN, test_rel_all2NN = [], [] test_epoch = [] test_batch_size = 1000 test_x_bach = np.reshape( np.linspace(region_l, region_r, num=test_batch_size), [-1, 1]) saveData.save_testData_or_solus2mat(test_x_bach, dataName='testx', outPath=R['FolderName']) # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了 config = tf.ConfigProto(allow_soft_placement=True) # 创建sess的时候对sess进行参数配置 config.gpu_options.allow_growth = True # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。 config.allow_soft_placement = True # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行 with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) tmp_lr = learning_rate for i_epoch in range(R['max_epoch'] + 1): x_it_batch = DNN_data.rand_it(batchsize_it, input_dim, region_a=region_l, region_b=region_r) xl_bd_batch, xr_bd_batch = DNN_data.rand_bd_1D(batchsize_bd, input_dim, region_a=region_l, region_b=region_r) tmp_lr = tmp_lr * (1 - lr_decay) if R['activate_penalty2bd_increase'] == 1: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_bd = bd_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_bd = 10 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_bd = 50 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_bd = 100 * bd_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_bd = 200 * bd_penalty_init else: temp_penalty_bd = 500 * bd_penalty_init elif R['activate_penalty2bd_increase'] == 2: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_bd = 5 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_bd = 1 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_bd = 0.5 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_bd = 0.1 * bd_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_bd = 0.05 * bd_penalty_init else: temp_penalty_bd = 0.02 * bd_penalty_init else: temp_penalty_bd = bd_penalty_init if R['activate_powSolus_increase'] == 1: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_powU = init_penalty2powU elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_powU = 10 * init_penalty2powU elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_powU = 50 * init_penalty2powU elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_powU = 100 * init_penalty2powU elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_powU = 200 * init_penalty2powU else: temp_penalty_powU = 500 * init_penalty2powU elif R['activate_powSolus_increase'] == 2: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_powU = 5 * init_penalty2powU elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_powU = 1 * init_penalty2powU elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_powU = 0.5 * init_penalty2powU elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_powU = 0.1 * init_penalty2powU elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_powU = 0.05 * init_penalty2powU else: temp_penalty_powU = 0.02 * init_penalty2powU else: temp_penalty_powU = init_penalty2powU p_WB = 0.0 _, loss_it_nn, loss_bd_nn, loss_nn, udu_nn, train_mse_nn, train_rel_nn = sess.run( [ train_Loss2NN, Loss_it2NN, Loss_bd2NN, Loss2NN, UNN_dot_UNN, train_mse_NN, train_rel_NN ], feed_dict={ X_it: x_it_batch, X_left_bd: xl_bd_batch, X_right_bd: xr_bd_batch, in_learning_rate: tmp_lr, bd_penalty: temp_penalty_bd, penalty2powU: temp_penalty_powU }) lossIt_all2NN.append(loss_it_nn) lossBD_all2NN.append(loss_bd_nn) loss_all2NN.append(loss_nn) UDU_NN.append(udu_nn) train_mse_all2NN.append(train_mse_nn) train_rel_all2NN.append(train_rel_nn) if i_epoch % 1000 == 0: run_times = time.time() - t0 DNN_tools.print_and_log_train_one_epoch(i_epoch, run_times, tmp_lr, temp_penalty_bd, temp_penalty_powU, p_WB, loss_it_nn, loss_bd_nn, loss_nn, udu_nn, train_mse_nn, train_rel_nn, log_out=log_fileout_NN) # --------------------------- test network ---------------------------------------------- test_epoch.append(i_epoch / 1000) train_option = False u_true2test, utest_nn, u_nn_normal, u_nn_scale = sess.run( [U_true, U_NN, U_NN_Normal, U_NN_freqs], feed_dict={ X_it: test_x_bach, train_opt: train_option }) test_mse2nn = np.mean(np.square(u_true2test - utest_nn)) test_mse_all2NN.append(test_mse2nn) test_rel2nn = test_mse2nn / np.mean(np.square(u_true2test)) test_rel_all2NN.append(test_rel2nn) DNN_tools.print_and_log_test_one_epoch(test_mse2nn, test_rel2nn, log_out=log_fileout_NN) # ----------------------- save training results to mat files, then plot them --------------------------------- saveData.save_trainLoss2mat_1actFunc(lossIt_all2NN, lossBD_all2NN, loss_all2NN, actName=act_func1, outPath=R['FolderName']) saveData.save_train_MSE_REL2mat(train_mse_all2NN, train_rel_all2NN, actName=act_func1, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(lossIt_all2NN, lossType='loss_it', seedNo=R['seed'], outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(lossBD_all2NN, lossType='loss_bd', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_all2NN, lossType='loss', seedNo=R['seed'], outPath=R['FolderName']) plotData.plotTrain_MSE_REL_1act_func(train_mse_all2NN, train_rel_all2NN, actName=act_func2, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) # ---------------------- save testing results to mat files, then plot them -------------------------------- saveData.save_testData_or_solus2mat(u_true2test, dataName='Utrue', outPath=R['FolderName']) saveData.save_testData_or_solus2mat(utest_nn, dataName=act_func1, outPath=R['FolderName']) saveData.save_testData_or_solus2mat(u_nn_normal, dataName='normal', outPath=R['FolderName']) saveData.save_testData_or_solus2mat(u_nn_scale, dataName='scale', outPath=R['FolderName']) saveData.save_testMSE_REL2mat(test_mse_all2NN, test_rel_all2NN, actName=act_func2, outPath=R['FolderName']) plotData.plotTest_MSE_REL(test_mse_all2NN, test_rel_all2NN, test_epoch, actName=act_func2, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True)
def solve_Integral_Equa(R): log_out_path = R['FolderName'] # 将路径从字典 R 中提取出来 if not os.path.exists(log_out_path): # 判断路径是否已经存在 os.mkdir(log_out_path) # 无 log_out_path 路径,创建一个 log_out_path 路径 outFile2para_name = '%s_%s.txt' % ('para2', 'beta') logfile_name = '%s%s.txt' % ('log2', R['activate_func']) log_fileout = open(os.path.join(log_out_path, logfile_name), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 para_outFile = open(os.path.join(log_out_path, outFile2para_name), 'w') # 在这个路径下创建并打开一个可写的 para_outFile.txt文件 DNN_Log_Print.dictionary_out2file(R, log_fileout) # 方程问题需要的设置 batchsize2bS = R['batch_size2bS'] batchsize2b = R['batch_size2y_b'] batchsize2integral = R['batch_size2integral'] wb_regular = R['regular_weight_biases'] if R['training_strategy'] == 'Alter_train': init_lr2b = R['init_learning_rate2b'] init_lr2S = R['init_learning_rate2S'] lr_decay2b = R['learning_rate_decay2b'] lr_decay2S = R['learning_rate_decay2S'] else: lr_decay = R['learning_rate_decay'] init_lr = R['init_learning_rate'] hidden_layers = R['hidden_layers'] act_func = R['activate_func'] # ------- set the problem --------- data_indim = R['input_dim'] para_dim = R['estimate_para_dim'] # bNN是否和参数 beta 显式相关,即参数 beta 作为bNN的一个输入。是:数据维数+参数维数;否:数据维数 if R['bnn2beta'] == 'explicitly_related': bNN_inDim = data_indim + para_dim else: bNN_inDim = data_indim # 初始化权重和和偏置的模式。bNN是一个整体的网络表示,还是分为几个独立的网格表示 b 的每一个分量 bi. b=(b0,b1,b2,......) if R['sub_networks'] == 'subDNNs': flag_b0 = 'bnn0' flag_b1 = 'bnn1' bNN_outDim = 1 if R['name2network'] == 'DNN_Cos_C_Sin_Base': W2b0, B2b0 = DNN_base.initialize_NN_random_normal2_CS( bNN_inDim, bNN_outDim, hidden_layers, flag_b0, unit_const_Init1layer=False) W2b1, B2b1 = DNN_base.initialize_NN_random_normal2_CS( bNN_inDim, bNN_outDim, hidden_layers, flag_b1, unit_const_Init1layer=False) else: W2b0, B2b0 = DNN_base.initialize_NN_random_normal2( bNN_inDim, bNN_outDim, hidden_layers, flag_b0, unit_const_Init1layer=False) W2b1, B2b1 = DNN_base.initialize_NN_random_normal2( bNN_inDim, bNN_outDim, hidden_layers, flag_b0, unit_const_Init1layer=False) else: bNN_outDim = para_dim flag_b = 'bnn' if R['name2network'] == 'DNN_Cos_C_Sin_Base': W2b, B2b = DNN_base.initialize_NN_random_normal2_CS( bNN_inDim, bNN_outDim, hidden_layers, flag_b, unit_const_Init1layer=False) else: W2b, B2b = DNN_base.initialize_NN_random_normal2( bNN_inDim, bNN_outDim, hidden_layers, flag_b, unit_const_Init1layer=False) global_steps = tf.Variable(0, trainable=False) with tf.device('/gpu:%s' % (R['gpuNo'])): with tf.variable_scope('vscope', reuse=tf.AUTO_REUSE): X = tf.placeholder(tf.float32, name='X_recv', shape=[batchsize2bS, data_indim]) Y = tf.placeholder(tf.float32, name='Y_recv', shape=[batchsize2bS, data_indim]) R2XY = tf.placeholder(tf.float32, name='R2XY_recv', shape=[batchsize2bS, data_indim]) tfOne = tf.placeholder(tf.float32, shape=[batchsize2bS, data_indim], name='tfOne') y = tf.placeholder(tf.float32, name='y_recv', shape=[batchsize2b, data_indim]) t_inte = tf.placeholder(tf.float32, name='t_integral', shape=[batchsize2integral, data_indim]) beta = tf.Variable(tf.random.uniform([1, para_dim]), dtype='float32', name='beta') # beta = tf.Variable([[0.25, -0.5]], dtype='float32', name='beta') # beta = tf.constant([[0.25, -0.5]], dtype=tf.float32, name='beta') inline_lr = tf.placeholder_with_default( input=1e-2, shape=[], name='inline_learning_rate') inline_lr2b = tf.placeholder_with_default( input=1e-2, shape=[], name='inline_learning_rate2b') inline_lr2S = tf.placeholder_with_default( input=1e-2, shape=[], name='inline_learning_rate2S') if R['bnn2beta'] == 'explicitly_related': Repeat_beta2t = tf.tile(beta, [batchsize2integral, 1]) tInte_beta = tf.concat([t_inte, Repeat_beta2t], axis=-1) Repeat_beta2y = tf.tile(beta, [batchsize2b, 1]) y_beta = tf.concat([y, Repeat_beta2y], axis=-1) Repeat_beta2Y = tf.tile(beta, [batchsize2bS, 1]) Y_beta = tf.concat([Y, Repeat_beta2Y], axis=-1) else: tInte_beta = t_inte y_beta = y Y_beta = Y if R['sub_networks'] == 'subDNNs': if R['name2network'] == str('DNN'): b0_NN2t = DNN_base.PDE_DNN(tInte_beta, W2b0, B2b0, hidden_layers, activate_name=act_func) b1_NN2t = DNN_base.PDE_DNN(tInte_beta, W2b1, B2b1, hidden_layers, activate_name=act_func) b0_NN2y = DNN_base.PDE_DNN(y_beta, W2b0, B2b0, hidden_layers, activate_name=act_func) b1_NN2y = DNN_base.PDE_DNN(y_beta, W2b1, B2b1, hidden_layers, activate_name=act_func) b0_NN2Y = DNN_base.PDE_DNN(Y_beta, W2b0, B2b0, hidden_layers, activate_name=act_func) b1_NN2Y = DNN_base.PDE_DNN(Y_beta, W2b1, B2b1, hidden_layers, activate_name=act_func) elif R['name2network'] == 'DNN_Cos_C_Sin_Base': freq = R['freqs'] b0_NN2t = DNN_base.PDE_DNN_Cos_C_Sin_Base( tInte_beta, W2b0, B2b0, hidden_layers, freq, activate_name=act_func) b1_NN2t = DNN_base.PDE_DNN_Cos_C_Sin_Base( tInte_beta, W2b1, B2b1, hidden_layers, freq, activate_name=act_func) b0_NN2y = DNN_base.PDE_DNN_Cos_C_Sin_Base( y_beta, W2b0, B2b0, hidden_layers, freq, activate_name=act_func) b1_NN2y = DNN_base.PDE_DNN_Cos_C_Sin_Base( y_beta, W2b1, B2b1, hidden_layers, freq, activate_name=act_func) b0_NN2Y = DNN_base.PDE_DNN_Cos_C_Sin_Base( Y_beta, W2b0, B2b0, hidden_layers, freq, activate_name=act_func) b1_NN2Y = DNN_base.PDE_DNN_Cos_C_Sin_Base( Y_beta, W2b1, B2b1, hidden_layers, freq, activate_name=act_func) b_NN2t = tf.concat([b0_NN2t, b1_NN2t], axis=-1) b_NN2y = tf.concat([b0_NN2y, b1_NN2y], axis=-1) b_NN2Y = tf.concat([b0_NN2Y, b1_NN2Y], axis=-1) else: if R['name2network'] == str('DNN'): b_NN2t = DNN_base.PDE_DNN(tInte_beta, W2b, B2b, hidden_layers, activate_name=act_func) b_NN2y = DNN_base.PDE_DNN(y_beta, W2b, B2b, hidden_layers, activate_name=act_func) b_NN2Y = DNN_base.PDE_DNN(Y_beta, W2b, B2b, hidden_layers, activate_name=act_func) elif R['name2network'] == 'DNN_Cos_C_Sin_Base': freq = R['freqs'] b_NN2t = DNN_base.PDE_DNN_Cos_C_Sin_Base( tInte_beta, W2b, B2b, hidden_layers, freq, activate_name=act_func) b_NN2y = DNN_base.PDE_DNN_Cos_C_Sin_Base( y_beta, W2b, B2b, hidden_layers, freq, activate_name=act_func) b_NN2Y = DNN_base.PDE_DNN_Cos_C_Sin_Base( Y_beta, W2b, B2b, hidden_layers, freq, activate_name=act_func) # 如下代码说明中 K 代表y的数目, N 代表 X 和 Y 的数目,M 代表 t 的数目 # 求 b 的代码,先处理等号左边,再处理等号右边 OneX = tf.concat([tfOne, X], axis=-1) # N 行 (1+dim) 列,N代表X数据数目 betaT = tf.transpose(beta, perm=[1, 0]) # (1+dim) 行 1 列 oneX_betaT = tf.matmul( OneX, betaT) # N 行 1 列。每个 Xi 都会对应 beta。 beta 是 (1+dim) 行 1 列的 tInte_beraXT = tf.transpose(t_inte, perm=[ 1, 0 ]) - oneX_betaT # N 行 M 列,t_inte 是 M 行 dim 列的 # b方程左边系数分母,关于t求和平均代替积分 fYX_t = fYX(z=tInte_beraXT, func_name='gaussian') # fY|X在t处的取值 # N 行 M 列 phi_1 = tf.transpose(1 - pi_star(t=t_inte), perm=[1, 0]) # M 行 dim 列转置为 dim 行 M 列 fYXt_1phi = tf.multiply(fYX_t, phi_1) # N 行 M 列 fYXt_1phi_intergal = tf.reduce_mean(fYXt_1phi, axis=-1) fYXt_1phi_intergal = tf.reshape(fYXt_1phi_intergal, shape=[-1, 1]) # N 行 dim 列 # b方程左边系数分子,关于t求和平均代替积分 dbeta2fYX_t = fYX_t * tInte_beraXT # N 行 M 列 expand_dbeta2fYX_t = tf.expand_dims(dbeta2fYX_t, axis=1) # N 页 1 行 M 列 tilde_Edbeta2fYX_t = tf.tile( expand_dbeta2fYX_t, [1, data_indim + 1, 1]) # N 页 (1+dim) 行 M 列 dfYX_beta_t = tf.multiply(tilde_Edbeta2fYX_t, tf.expand_dims( OneX, axis=-1)) # N 页 (1+dim) 行 M 列 phi_t = tf.transpose(pi_star(t=t_inte), perm=[1, 0]) # M 行 1 列转置为 1 行 M 列 dfYX_beta_phi_t = tf.multiply(dfYX_beta_t, phi_t) # N 页 (1+dim) 行 M 列 dfYX_beta_integral = tf.reduce_mean(dfYX_beta_phi_t, axis=-1) # N 行 (1+dim) 列 # b方程左边的系数 ceof2left = dfYX_beta_integral / fYXt_1phi_intergal # N 行 (1+dim) 列 # b方程左边积分系数的匹配项 yaux_beraXT = tf.transpose( y, perm=[1, 0]) - oneX_betaT # N 行 K 列, y 是 K 行 data_dim 列 fYX_y = fYX(z=yaux_beraXT, func_name='gaussian') # fY|X在y处的取值, N 行 K 列 expand_fYX_y = tf.expand_dims(fYX_y, axis=1) # N 页 1 行 K 列 bleft_fYX_y = tf.multiply(tf.expand_dims(ceof2left, axis=-1), expand_fYX_y) # N 页 (1+dim) 行 K 列 # b方程左边的第一个关于beta的导数项, 即dfYX2beta(y,Xi,beta) dbeta2fYX_y = fYX_y * yaux_beraXT # N 行 K 列 expand_dbeta2fYX_y = tf.expand_dims(dbeta2fYX_y, axis=1) # N 页 1 行 K 列 dfYX_beta_y = tf.multiply(expand_dbeta2fYX_y, tf.expand_dims( OneX, axis=-1)) # N 页 (1+dim) 行 K 列 # b方程左边的组合结果 sum2bleft = bleft_fYX_y + dfYX_beta_y # N 页 (1+dim) 行 K 列 bleft = tf.reduce_mean(sum2bleft, axis=0) # 1+dim 行 K 列 # b 方程的右边。右边的第一项,如下两行计算 trans_b_NN2y = tf.transpose( b_NN2y, perm=[1, 0]) # K 行 2 列转置为 2 行 K 列,然后扩为 1 X 2 X K 的 by_fYX_y = tf.multiply(tf.expand_dims(trans_b_NN2y, axis=0), tf.expand_dims(fYX_y, axis=1)) # N 页 1+dim 行 K 列 # b方程右边的系数的分子 expand_fYX_t = tf.tile( tf.expand_dims(fYX_t, axis=1), [1, 1 + data_indim, 1]) # N 页 (1+data_indim) 行 M 列 bt_fYXt = tf.multiply(tf.transpose(b_NN2t, perm=[1, 0]), expand_fYX_t) # N 页 (1+data_indim) 行 M 列 bt_fYXt_phi = tf.multiply(bt_fYXt, phi_t) # N 页 (1+data_indim) 行 M 列 bt_fYXt_phi_integral = tf.reduce_mean( bt_fYXt_phi, axis=-1) # N 行 (1+data_indim) 列 # b方程右边的系数。分母为共用b方程左边的分母 ceof2fight = bt_fYXt_phi_integral / fYXt_1phi_intergal # N 行 (1+data_indim) 列 # b方程系数与匹配项的线性积 expand_fYX_y_right = tf.expand_dims(fYX_y, axis=1) # N 页 1 行 K 列 bright_fYX_y = tf.multiply( tf.expand_dims(ceof2fight, axis=-1), expand_fYX_y_right) # N 页 (1+data_indim) 行 K 列 # b方程右边的组合结果 sum2right = by_fYX_y + bright_fYX_y # N 页 (1+dim) 行 K 列 bright = tf.reduce_mean(sum2right, axis=0) # 1+dim 行 K 列 # b方程左边和右边要相等,使用差的平方来估计 loss2b = tf.reduce_mean( tf.reduce_mean(tf.square(bleft - bright), axis=-1)) # 求 Seff 的代码 Y_beraXT = Y - oneX_betaT # N 行 dim 列, Y 和 oneX_betaT 都是 N 行 dim 列的 fYX_Y = fYX(z=Y_beraXT, func_name='gaussian') # fY|X在t处的取值 # N 行 dim 列 ceof2R = (R2XY / fYX_Y) # N 行 dim 列, R2XY 是 N 行 dim 列的 dbeta2fYX_Y = tf.multiply(fYX_Y, Y_beraXT) # N 行 dim 列 dfYX_beta_Y = tf.multiply( dbeta2fYX_Y, OneX) # fY|X(t)对beta的导数,N行(1+dim)列,OneX 是 N 行 (1+dim) 列 Sbeta_star1 = tf.multiply(ceof2R, dfYX_beta_Y) # N 行 (1+dim) Seff_temp = tf.reshape(tf.reduce_mean(fYXt_1phi_intergal, axis=-1), shape=[-1, 1]) # N 行 dim 列 ceof21R = (1 - R2XY) / Seff_temp # N 行 dim 列 Sbeta_star2 = tf.multiply(ceof21R, dfYX_beta_integral) # N 行 (1+dim) Sbeta_star = Sbeta_star1 - Sbeta_star2 # N 行 (1+dim) Seff2 = tf.multiply(R2XY, b_NN2Y) # N 行 (1+dim) Seff3 = tf.multiply(1 - R2XY, bt_fYXt_phi_integral / fYXt_1phi_intergal) # N 行 (1+dim) squareSeff = tf.square(Sbeta_star - Seff2 + Seff3) # N 行 (1+dim) loss2Seff = tf.reduce_mean(tf.reduce_mean(squareSeff, axis=0)) if R['sub_networks'] == 'subDNNs': if R['regular_weight_model'] == 'L1': regular_WB2b0 = DNN_base.regular_weights_biases_L1( W2b0, B2b0) regular_WB2b1 = DNN_base.regular_weights_biases_L1( W2b1, B2b1) elif R['regular_weight_model'] == 'L2': regular_WB2b0 = DNN_base.regular_weights_biases_L2( W2b0, B2b0) regular_WB2b1 = DNN_base.regular_weights_biases_L2( W2b1, B2b1) else: regular_WB2b0 = tf.constant(0.0) regular_WB2b1 = tf.constant(0.0) regular_WB2b = regular_WB2b0 + regular_WB2b1 else: if R['regular_weight_model'] == 'L1': regular_WB2b = DNN_base.regular_weights_biases_L1(W2b, B2b) elif R['regular_weight_model'] == 'L2': regular_WB2b = DNN_base.regular_weights_biases_L2(W2b, B2b) else: regular_WB2b = tf.constant(0.0) penalty_WB = wb_regular * regular_WB2b if R['training_strategy'] == 'Alter_train': lossB = loss2b + penalty_WB lossSeff = loss2Seff + penalty_WB if R['sub_networks'] == 'subDNNs': WB = [W2b0, B2b0, W2b1, B2b1] else: WB = [W2b, B2b] my_optimizer2b = tf.train.AdamOptimizer(inline_lr2b) my_optimizer2Seff = tf.train.AdamOptimizer(inline_lr2S) train_loss2b = my_optimizer2b.minimize( lossB, global_step=global_steps, var_list=WB) train_loss2Seff = my_optimizer2Seff.minimize( lossSeff, global_step=global_steps, var_list=beta) else: loss = 5 * loss2b + 10 * loss2Seff + penalty_WB # 要优化的loss function my_optimizer = tf.train.AdamOptimizer(inline_lr) if R['train_group'] == 0: train_my_loss = my_optimizer.minimize( loss, global_step=global_steps) if R['train_group'] == 1: if R['sub_networks'] == 'subDNNs': WB = [W2b0, B2b0, W2b1, B2b1] else: WB = [W2b, B2b] train_op1 = my_optimizer.minimize(loss2b, global_step=global_steps, var_list=WB) train_op2 = my_optimizer.minimize(loss2Seff, global_step=global_steps, var_list=beta) train_op3 = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.group(train_op1, train_op2, train_op3) elif R['train_group'] == 2: if R['sub_networks'] == 'subDNNs': WB = [W2b0, B2b0, W2b1, B2b1] else: WB = [W2b, B2b] train_op1 = my_optimizer.minimize(loss2b, global_step=global_steps, var_list=WB) train_op2 = my_optimizer.minimize(loss2Seff, global_step=global_steps, var_list=beta) train_my_loss = tf.group(train_op1, train_op2) t0 = time.time() loss_b_all, loss_seff_all, loss_all = [], [], [] # 空列表, 使用 append() 添加元素 # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了 config = tf.ConfigProto(allow_soft_placement=True) # 创建sess的时候对sess进行参数配置 config.gpu_options.allow_growth = True # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。 config.allow_soft_placement = True # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行 X_batch = DNN_data.randnormal_mu_sigma(size=batchsize2bS, mu=0.5, sigma=0.5) Y_init = 0.25 - 0.5 * X_batch + np.reshape( np.random.randn(batchsize2bS, 1), (-1, 1)) # y_batch = DNN_data.randnormal_mu_sigma(size=batchsize2aux, mu=0.0, sigma=1.5) # x_aux_batch = DNN_data.randnormal_mu_sigma(size=batchsize2aux, mu=0.5, sigma=0.5) # y_batch = 0.25 - 0.5 * x_aux_batch + np.reshape(np.random.randn(batchsize2aux, 1), (-1, 1)) relate2XY = np.reshape(np.random.randint(0, 2, batchsize2bS), (-1, 1)) Y_batch = np.multiply(Y_init, relate2XY) one2train = np.ones((batchsize2bS, 1)) y_batch = DNN_data.rand_it(batch_size=batchsize2b, variable_dim=data_indim, region_a=-2, region_b=2) t_batch = DNN_data.rand_it(batch_size=batchsize2integral, variable_dim=data_indim, region_a=-2, region_b=2) with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) if R['training_strategy'] == 'Alter_train': tmp_lr2b = init_lr2b tmp_lr2S = init_lr2S for i_epoch in range(R['max_epoch'] + 1): if i_epoch % 10 == 0 and i_epoch != 0: # 10, 20, 30, 40,..... tmp_lr2S = tmp_lr2S * (1 - lr_decay2S) _S, loss2seff_tmp, loss2b_tmp, p_WB, beta_temp = sess.run( [train_loss2Seff, loss2Seff, loss2b, penalty_WB, beta], feed_dict={ X: X_batch, Y: Y_batch, R2XY: relate2XY, y: y_batch, tfOne: one2train, t_inte: t_batch, inline_lr2S: tmp_lr2S }) else: # 0,1,2,3,4,5,6,7,8,9, 11,12,13,....,19, 21,22,.... tmp_lr2b = tmp_lr2b * (1 - lr_decay2b) _b, loss2b_tmp, loss2seff_tmp, p_WB, beta_temp = sess.run( [train_loss2b, loss2b, loss2Seff, penalty_WB, beta], feed_dict={ X: X_batch, Y: Y_batch, R2XY: relate2XY, y: y_batch, tfOne: one2train, t_inte: t_batch, inline_lr2b: tmp_lr2b }) loss_seff_all.append(loss2seff_tmp) loss_b_all.append(loss2b_tmp) if (i_epoch % 10) == 0: DNN_tools.log_string( '*************** epoch: %d*10 ****************' % int(i_epoch / 10), log_fileout) DNN_tools.log_string( 'lossb for training: %.10f\n' % loss2b_tmp, log_fileout) DNN_tools.log_string( 'lossS for training: %.10f\n' % loss2seff_tmp, log_fileout) DNN_tools.log_string( 'Penalty2Weights_Bias for training: %.10f\n' % p_WB, log_fileout) if (i_epoch % 100) == 0: print( '**************** epoch: %d*100 *******************' % int(i_epoch / 100)) print('beta:[%f %f]' % (beta_temp[0, 0], beta_temp[0, 1])) print('\n') DNN_tools.log_string( '*************** epoch: %d*100 *****************' % int(i_epoch / 100), para_outFile) DNN_tools.log_string( 'beta:[%f, %f]' % (beta_temp[0, 0], beta_temp[0, 1]), para_outFile) DNN_tools.log_string('\n', para_outFile) saveData.save_2trainLosses2mat(loss_b_all, loss_seff_all, data1Name='lossb', data2Name='lossSeff', actName=act_func, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_b_all, lossType='loss_b', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_seff_all, lossType='loss_s', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) else: tmp_lr = init_lr for i_epoch in range(R['max_epoch'] + 1): tmp_lr = tmp_lr * (1 - lr_decay) _, loss2b_tmp, loss2seff_tmp, loss_tmp, p_WB, beta_temp = sess.run( [train_my_loss, loss2b, loss2Seff, loss, penalty_WB, beta], feed_dict={ X: X_batch, Y: Y_batch, R2XY: relate2XY, y: y_batch, tfOne: one2train, t_inte: t_batch, inline_lr: tmp_lr }) loss_b_all.append(loss2b_tmp) loss_seff_all.append(loss2seff_tmp) loss_all.append(loss_tmp) if (i_epoch % 10) == 0: DNN_tools.log_string( '*************** epoch: %d*10 ****************' % int(i_epoch / 10), log_fileout) DNN_tools.log_string( 'lossb for training: %.10f\n' % loss2b_tmp, log_fileout) DNN_tools.log_string( 'lossS for training: %.10f\n' % loss2seff_tmp, log_fileout) DNN_tools.log_string( 'loss for training: %.10f\n' % loss_tmp, log_fileout) DNN_tools.log_string( 'Penalty2Weights_Bias for training: %.10f\n' % p_WB, log_fileout) if (i_epoch % 100) == 0: print( '**************** epoch: %d*100 *******************' % int(i_epoch / 100)) print('beta:[%f %f]' % (beta_temp[0, 0], beta_temp[0, 1])) print('\n') DNN_tools.log_string( '*************** epoch: %d*100 *****************' % int(i_epoch / 100), para_outFile) DNN_tools.log_string( 'beta:[%f, %f]' % (beta_temp[0, 0], beta_temp[0, 1]), para_outFile) DNN_tools.log_string('\n', para_outFile) saveData.save_3trainLosses2mat(loss_b_all, loss_seff_all, loss_all, data1Name='lossb', data2Name='lossSeff', data3Name='lossAll', actName=act_func, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_b_all, lossType='loss_b', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_seff_all, lossType='loss_s', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_all, lossType='loss_all', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True)
def solve_Multiscale_PDE(R): log_out_path = R['FolderName'] # 将路径从字典 R 中提取出来 if not os.path.exists(log_out_path): # 判断路径是否已经存在 os.mkdir(log_out_path) # 无 log_out_path 路径,创建一个 log_out_path 路径 logfile_name = '%s_%s.txt' % ('log2train', R['name2act_hidden']) log_fileout = open(os.path.join(log_out_path, logfile_name), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 DNN_Log_Print.dictionary_out2file(R, log_fileout) # 问题需要的设置 batchsize_it = R['batch_size2interior'] batchsize_bd = R['batch_size2boundary'] bd_penalty_init = R['init_boundary_penalty'] # Regularization parameter for boundary conditions penalty2WB = R['penalty2weight_biases'] # Regularization parameter for weights and biases lr_decay = R['learning_rate_decay'] learning_rate = R['learning_rate'] hidden_layers = R['hidden_layers'] actIn_func = R['name2act_in'] act_func = R['name2act_hidden'] actOut_func = R['name2act_out'] input_dim = R['input_dim'] out_dim = R['output_dim'] lambda2lncosh = R['lambda2lncosh'] # pLaplace 算子需要的额外设置, 先预设一下 p_index = 2 epsilon = 0.1 mesh_number = 2 region_lb = 0.0 region_rt = 1.0 if R['PDE_type'] == 'general_Laplace': # -laplace u = f region_lb = 0.0 region_rt = 1.0 f, u_true, u_left, u_right, u_bottom, u_top = General_Laplace.get_infos2Laplace_2D( input_dim=input_dim, out_dim=out_dim, left_bottom=region_lb, right_top=region_rt, equa_name=R['equa_name']) elif R['PDE_type'] == 'pLaplace_implicit': p_index = R['order2pLaplace_operator'] epsilon = R['epsilon'] mesh_number = R['mesh_number'] if R['equa_name'] == 'multi_scale2D_5': region_lb = 0.0 region_rt = 1.0 else: region_lb = -1.0 region_rt = 1.0 u_true, f, A_eps, u_left, u_right, u_bottom, u_top = MS_LaplaceEqs.get_infos2pLaplace_2D( input_dim=input_dim, out_dim=out_dim, mesh_number=R['mesh_number'], intervalL=0.0, intervalR=1.0, equa_name=R['equa_name']) elif R['PDE_type'] == 'pLaplace_explicit': p_index = R['order2pLaplace_operator'] epsilon = R['epsilon'] mesh_number = R['mesh_number'] if R['equa_name'] == 'multi_scale2D_7': region_lb = 0.0 region_rt = 1.0 u_true = MS_LaplaceEqs.true_solution2E7(input_dim, out_dim, eps=epsilon) u_left, u_right, u_bottom, u_top = MS_LaplaceEqs.boundary2E7( input_dim, out_dim, region_lb, region_rt, eps=epsilon) A_eps = MS_LaplaceEqs.elliptic_coef2E7(input_dim, out_dim, eps=epsilon) elif R['PDE_type'] == 'Possion_Boltzmann': # 求解如下方程, A_eps(x) 震荡的比较厉害,具有多个尺度 # d **** d **** # - ---- | A_eps(x)* ---- u_eps(x) | + Ku_eps =f(x), x \in R^n # dx **** dx **** # region_lb = -1.0 region_lb = 0.0 region_rt = 1.0 p_index = R['order2pLaplace_operator'] epsilon = R['epsilon'] mesh_number = R['mesh_number'] A_eps, kappa, u_true, u_left, u_right, u_top, u_bottom, f = MS_BoltzmannEqs.get_infos2Boltzmann_2D( equa_name=R['equa_name'], intervalL=region_lb, intervalR=region_rt) elif R['PDE_type'] == 'Convection_diffusion': region_lb = -1.0 region_rt = 1.0 p_index = R['order2pLaplace_operator'] epsilon = R['epsilon'] mesh_number = R['mesh_number'] A_eps, Bx, By, u_true, u_left, u_right, u_top, u_bottom, f = MS_ConvectionEqs.get_infos2Convection_2D( equa_name=R['equa_name'], eps=epsilon, region_lb=0.0, region_rt=1.0) # 初始化权重和和偏置 flag1 = 'WB' if R['model2NN'] == 'DNN_FourierBase': W2NN, B2NN = DNN_base.Xavier_init_NN_Fourier(input_dim, out_dim, hidden_layers, flag1) else: W2NN, B2NN = DNN_base.Xavier_init_NN(input_dim, out_dim, hidden_layers, flag1) global_steps = tf.compat.v1.Variable(0, trainable=False) with tf.device('/gpu:%s' % (R['gpuNo'])): with tf.compat.v1.variable_scope('vscope', reuse=tf.compat.v1.AUTO_REUSE): XY_it = tf.compat.v1.placeholder(tf.float32, name='X_it', shape=[None, input_dim]) # * 行 2 列 XY_left = tf.compat.v1.placeholder(tf.float32, name='X_left_bd', shape=[None, input_dim]) # * 行 2 列 XY_right = tf.compat.v1.placeholder(tf.float32, name='X_right_bd', shape=[None, input_dim]) # * 行 2 列 XY_bottom = tf.compat.v1.placeholder(tf.float32, name='Y_bottom_bd', shape=[None, input_dim]) # * 行 2 列 XY_top = tf.compat.v1.placeholder(tf.float32, name='Y_top_bd', shape=[None, input_dim]) # * 行 2 列 boundary_penalty = tf.compat.v1.placeholder_with_default(input=1e3, shape=[], name='bd_p') in_learning_rate = tf.compat.v1.placeholder_with_default(input=1e-5, shape=[], name='lr') # 供选择的网络模式 if R['model2NN'] == 'DNN': UNN = DNN_base.DNN(XY_it, W2NN, B2NN, hidden_layers, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_left = DNN_base.DNN(XY_left, W2NN, B2NN, hidden_layers, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_right = DNN_base.DNN(XY_right, W2NN, B2NN, hidden_layers, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_bottom = DNN_base.DNN(XY_bottom, W2NN, B2NN, hidden_layers, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_top = DNN_base.DNN(XY_top, W2NN, B2NN, hidden_layers, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) elif R['model2NN'] == 'DNN_scale': freq = R['freq'] UNN = DNN_base.DNN_scale(XY_it, W2NN, B2NN, hidden_layers, freq, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_left = DNN_base.DNN_scale(XY_left, W2NN, B2NN, hidden_layers, freq, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_right = DNN_base.DNN_scale(XY_right, W2NN, B2NN, hidden_layers, freq, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_bottom = DNN_base.DNN_scale(XY_bottom, W2NN, B2NN, hidden_layers, freq, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_top = DNN_base.DNN_scale(XY_top, W2NN, B2NN, hidden_layers, freq, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) elif R['model2NN'] == 'DNN_adapt_scale': freqs = R['freq'] UNN = DNN_base.DNN_adapt_scale(XY_it, W2NN, B2NN, hidden_layers, freqs, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_left = DNN_base.DNN_adapt_scale(XY_left, W2NN, B2NN, hidden_layers, freqs, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_right = DNN_base.DNN_adapt_scale(XY_right, W2NN, B2NN, hidden_layers, freqs, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_bottom = DNN_base.DNN_adapt_scale(XY_bottom, W2NN, B2NN, hidden_layers, freqs, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) UNN_top = DNN_base.DNN_adapt_scale(XY_top, W2NN, B2NN, hidden_layers, freqs, activateIn_name=actIn_func, activate_name=act_func, activateOut_name=actOut_func) elif R['model2NN'] == 'DNN_FourierBase': freqs = R['freq'] UNN = DNN_base.DNN_FourierBase(XY_it, W2NN, B2NN, hidden_layers, freqs, activate_name=act_func, activateOut_name=actOut_func, sFourier=R['sfourier']) UNN_left = DNN_base.DNN_FourierBase(XY_left, W2NN, B2NN, hidden_layers, freqs, activate_name=act_func, activateOut_name=actOut_func, sFourier=R['sfourier']) UNN_right = DNN_base.DNN_FourierBase(XY_right, W2NN, B2NN, hidden_layers, freqs, activate_name=act_func, activateOut_name=actOut_func, sFourier=R['sfourier']) UNN_bottom = DNN_base.DNN_FourierBase(XY_bottom, W2NN, B2NN, hidden_layers, freqs, activate_name=act_func, activateOut_name=actOut_func, sFourier=R['sfourier']) UNN_top = DNN_base.DNN_FourierBase(XY_top, W2NN, B2NN, hidden_layers, freqs, activate_name=act_func, activateOut_name=actOut_func, sFourier=R['sfourier']) X_it = tf.reshape(XY_it[:, 0], shape=[-1, 1]) Y_it = tf.reshape(XY_it[:, 1], shape=[-1, 1]) # 变分形式的loss of interior,训练得到的 UNN 是 * 行 1 列 if R['loss_type'] == 'variational_loss': dUNN = tf.gradients(UNN, XY_it)[0] # * 行 2 列 dUNN_Norm = tf.reshape(tf.sqrt(tf.reduce_sum(tf.square(dUNN), axis=-1)), shape=[-1, 1]) # 按行求和 if R['PDE_type'] == 'general_Laplace': dUNN_2Norm = tf.square(dUNN_Norm) loss_it_variational = (1.0 / 2) * dUNN_2Norm - \ tf.multiply(tf.reshape(f(X_it, Y_it), shape=[-1, 1]), UNN) elif R['PDE_type'] == 'pLaplace_explicit' or R['PDE_type'] == 'pLaplace_implicit': a_eps = A_eps(X_it, Y_it) # * 行 1 列 AdUNN_pNorm = tf.multiply(a_eps, tf.pow(dUNN_Norm, p_index)) if R['equa_name'] == 'multi_scale2D_7': fxy = MS_LaplaceEqs.get_force_side2MS_E7(x=X_it, y=Y_it) loss_it_variational = (1.0 / p_index) * AdUNN_pNorm - \ tf.multiply(tf.reshape(fxy, shape=[-1, 1]), UNN) else: loss_it_variational = (1.0 / p_index) * AdUNN_pNorm - \ tf.multiply(tf.reshape(f(X_it, Y_it), shape=[-1, 1]), UNN) elif R['PDE_type'] == 'Possion_Boltzmann': a_eps = A_eps(X_it, Y_it) # * 行 1 列 Kappa = kappa(X_it, Y_it) # * 行 1 列 AdUNN_pNorm = a_eps * tf.pow(dUNN_Norm, p_index) # * 行 1 列 if R['equa_name'] == 'Boltzmann3' or R['equa_name'] == 'Boltzmann4' or\ R['equa_name'] == 'Boltzmann5' or R['equa_name'] == 'Boltzmann6': fxy = MS_BoltzmannEqs.get_foreside2Boltzmann2D(x=X_it, y=Y_it) loss_it_variational = (1.0 / p_index) * (AdUNN_pNorm + Kappa*UNN*UNN) - \ tf.multiply(tf.reshape(fxy, shape=[-1, 1]), UNN) else: loss_it_variational = (1.0 / p_index) * (AdUNN_pNorm + Kappa * UNN * UNN) - \ tf.multiply(tf.reshape(f(X_it, Y_it), shape=[-1, 1]), UNN) loss_it = tf.reduce_mean(loss_it_variational) elif R['loss_type'] == 'lncosh_loss2Ritz': dUNN = tf.gradients(UNN, XY_it)[0] # * 行 2 列 dUNN_Norm = tf.reshape(tf.sqrt(tf.reduce_sum(tf.square(dUNN), axis=-1)), shape=[-1, 1]) # 按行求和 if R['PDE_type'] == 'general_Laplace': dUNN_2Norm = tf.square(dUNN_Norm) loss_it_variational = (1.0 / 2) * dUNN_2Norm - \ tf.multiply(tf.reshape(f(X_it, Y_it), shape=[-1, 1]), UNN) cosh_loss_it = tf.cosh(lambda2lncosh * loss_it_variational) loss_lncosh_it = (1.0 / lambda2lncosh)*tf.log(cosh_loss_it) elif R['PDE_type'] == 'pLaplace_explicit' or R['PDE_type'] == 'pLaplace_implicit': a_eps = A_eps(X_it, Y_it) # * 行 1 列 AdUNN_pNorm = tf.multiply(a_eps, tf.pow(dUNN_Norm, p_index)) if R['equa_name'] == 'multi_scale2D_7': fxy = MS_LaplaceEqs.get_force_side2MS_E7(x=X_it, y=Y_it) loss_it_variational = (1.0 / p_index) * AdUNN_pNorm - \ tf.multiply(tf.reshape(fxy, shape=[-1, 1]), UNN) else: loss_it_variational = (1.0 / p_index) * AdUNN_pNorm - \ tf.multiply(tf.reshape(f(X_it, Y_it), shape=[-1, 1]), UNN) cosh_loss_it = tf.cosh(lambda2lncosh * loss_it_variational) loss_lncosh_it = (1.0 / lambda2lncosh)*tf.log(cosh_loss_it) elif R['PDE_type'] == 'Possion_Boltzmann': a_eps = A_eps(X_it, Y_it) # * 行 1 列 Kappa = kappa(X_it, Y_it) # * 行 1 列 AdUNN_pNorm = a_eps * tf.pow(dUNN_Norm, p_index) # * 行 1 列 if R['equa_name'] == 'Boltzmann3' or R['equa_name'] == 'Boltzmann4' or \ R['equa_name'] == 'Boltzmann5' or R['equa_name'] == 'Boltzmann6': fxy = MS_BoltzmannEqs.get_foreside2Boltzmann2D(x=X_it, y=Y_it) loss_it_variational = (1.0 / p_index) * (AdUNN_pNorm + Kappa * UNN * UNN) - \ tf.multiply(tf.reshape(fxy, shape=[-1, 1]), UNN) else: loss_it_variational = (1.0 / p_index) * (AdUNN_pNorm + Kappa * UNN * UNN) - \ tf.multiply(tf.reshape(f(X_it, Y_it), shape=[-1, 1]), UNN) cosh_loss_it = tf.cosh(lambda2lncosh * loss_it_variational) loss_lncosh_it = (1.0 / lambda2lncosh)*tf.log(cosh_loss_it) loss_it = tf.reduce_mean(loss_lncosh_it) elif R['loss_type'] == 'L2_loss': dUNN = tf.gradients(UNN, XY_it)[0] # * 行 2 列 if R['PDE_type'] == 'general_Laplace': dUNNx = tf.gather(dUNN, [0], axis=-1) dUNNy = tf.gather(dUNN, [1], axis=-1) dUNNxxy = tf.gradients(dUNNx, XY_it)[0] dUNNyxy = tf.gradients(dUNNy, XY_it)[0] dUNNxx = tf.gather(dUNNxxy, [0], axis=-1) dUNNyy = tf.gather(dUNNyxy, [1], axis=-1) # -Laplace U=f --> -Laplace U - f --> -(Laplace U + f) loss_it_L2 = tf.add(dUNNxx, dUNNyy) + tf.reshape(f(X_it, Y_it), shape=[-1, 1]) square_loss_it = tf.square(loss_it_L2) elif R['PDE_type'] == 'Convection_diffusion': a_eps = A_eps(X_it, Y_it) # * 行 1 列 bx = Bx(X_it, Y_it) by = By(X_it, Y_it) dUNNx = tf.gather(dUNN, [0], axis=-1) dUNNy = tf.gather(dUNN, [1], axis=-1) dUNNxxy = tf.gradients(dUNNx, XY_it)[0] dUNNyxy = tf.gradients(dUNNy, XY_it)[0] dUNNxx = tf.gather(dUNNxxy, [0], axis=-1) dUNNyy = tf.gather(dUNNyxy, [1], axis=-1) ddUNN = tf.add(dUNNxx, dUNNyy) bdUNN = bx * dUNNx + by * dUNNy loss_it_L2 = -a_eps*ddUNN + bdUNN - f(X_it, Y_it) square_loss_it = tf.square(loss_it_L2) elif R['PDE_type'] == 'pLaplace_explicit' or R['PDE_type'] == 'pLaplace_implicit': a_eps = A_eps(X_it, Y_it) dUNNxy_norm = tf.reshape(tf.sqrt(tf.reduce_sum(tf.square(dUNN), axis=-1)), shape=[-1, 1]) # 按行求和 dUNNx = tf.gather(dUNN, [0], axis=-1) dUNNy = tf.gather(dUNN, [1], axis=-1) if p_index == 2: dUxdUnorm = dUNNx dUydUnorm = dUNNy else: dUxdUnorm = tf.multiply(tf.pow(dUNNxy_norm, p_index - 2), dUNNx) dUydUnorm = tf.multiply(tf.pow(dUNNxy_norm, p_index - 2), dUNNy) AdUxdUnorm = tf.multiply(a_eps, dUxdUnorm) AdUydUnorm = tf.multiply(a_eps, dUydUnorm) dAdUxdUnorm_xy = tf.gradients(AdUxdUnorm, XY_it)[0] dAdUydUnorm_xy = tf.gradients(AdUydUnorm, XY_it)[0] dAdUxdUnorm_x = tf.gather(dAdUxdUnorm_xy, [0], axis=-1) dAdUydUnorm_y = tf.gather(dAdUydUnorm_xy, [1], axis=-1) div_AdUdUnorm = tf.add(dAdUxdUnorm_x, dAdUydUnorm_y) loss_it_L2 = -div_AdUdUnorm - f(X_it, Y_it) square_loss_it = tf.square(loss_it_L2) elif R['PDE_type'] == 'Possion_Boltzmann': a_eps = A_eps(X_it, Y_it) Kappa = kappa(X_it, Y_it) # * 行 1 列 dUNNxy_norm = tf.reshape(tf.sqrt(tf.reduce_sum(tf.square(dUNN), axis=-1)), shape=[-1, 1]) # 按行求和 dUNNx = tf.gather(dUNN, [0], axis=-1) dUNNy = tf.gather(dUNN, [1], axis=-1) if p_index == 2: dUxdUnorm = dUNNx dUydUnorm = dUNNy else: dUxdUnorm = tf.multiply(tf.pow(dUNNxy_norm, p_index - 2), dUNNx) dUydUnorm = tf.multiply(tf.pow(dUNNxy_norm, p_index - 2), dUNNy) AdUxdUnorm = tf.multiply(a_eps, dUxdUnorm) AdUydUnorm = tf.multiply(a_eps, dUydUnorm) dAdUxdUnorm_xy = tf.gradients(AdUxdUnorm, XY_it)[0] dAdUydUnorm_xy = tf.gradients(AdUydUnorm, XY_it)[0] dAdUxdUnorm_x = tf.gather(dAdUxdUnorm_xy, [0], axis=-1) dAdUydUnorm_y = tf.gather(dAdUydUnorm_xy, [1], axis=-1) div_AdUdUnorm = tf.add(dAdUxdUnorm_x, dAdUydUnorm_y) KU = tf.multiply(Kappa, UNN) loss_it_L2 = -div_AdUdUnorm + KU - f(X_it, Y_it) square_loss_it = tf.square(loss_it_L2) # loss_it = tf.reduce_mean(square_loss_it) * (region_rt - region_lb) * (region_rt - region_lb) loss_it = tf.reduce_mean(square_loss_it) U_left = u_left(tf.reshape(XY_left[:, 0], shape=[-1, 1]), tf.reshape(XY_left[:, 1], shape=[-1, 1])) U_right = u_right(tf.reshape(XY_right[:, 0], shape=[-1, 1]), tf.reshape(XY_right[:, 1], shape=[-1, 1])) U_bottom = u_bottom(tf.reshape(XY_bottom[:, 0], shape=[-1, 1]), tf.reshape(XY_bottom[:, 1], shape=[-1, 1])) U_top = u_top(tf.reshape(XY_top[:, 0], shape=[-1, 1]), tf.reshape(XY_top[:, 1], shape=[-1, 1])) if R['loss_type'] == 'lncosh_loss2Ritz': cosh_bd = tf.cosh(lambda2lncosh*(UNN_left-U_left))+tf.cosh(lambda2lncosh*(UNN_right-U_right)) + \ tf.cosh(lambda2lncosh * (UNN_bottom - U_bottom)) + tf.cosh(lambda2lncosh * (UNN_top - U_top)) loss_cosh_bd = (1.0 / lambda2lncosh) * tf.log(cosh_bd) loss_bd = tf.reduce_mean(loss_cosh_bd) else: loss_bd_square = tf.square(UNN_left - U_left) + tf.square(UNN_right - U_right) + \ tf.square(UNN_bottom - U_bottom) + tf.square(UNN_top - U_top) loss_bd = tf.reduce_mean(loss_bd_square) if R['regular_wb_model'] == 'L1': regularSum2WB = DNN_base.regular_weights_biases_L1(W2NN, B2NN) # 正则化权重和偏置 L1正则化 elif R['regular_wb_model'] == 'L2': regularSum2WB = DNN_base.regular_weights_biases_L2(W2NN, B2NN) # 正则化权重和偏置 L2正则化 else: regularSum2WB = tf.constant(0.0) # 无正则化权重参数 PWB = penalty2WB * regularSum2WB loss = loss_it + boundary_penalty * loss_bd + PWB # 要优化的loss function my_optimizer = tf.compat.v1.train.AdamOptimizer(in_learning_rate) if R['train_model'] == 'group3_training': train_op1 = my_optimizer.minimize(loss_it, global_step=global_steps) train_op2 = my_optimizer.minimize(loss_bd, global_step=global_steps) train_op3 = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.group(train_op1, train_op2, train_op3) elif R['train_model'] == 'group2_training': train_op2bd = my_optimizer.minimize(loss_bd, global_step=global_steps) train_op2union = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.group(train_op2bd, train_op2union) elif R['train_model'] == 'union_training': train_my_loss = my_optimizer.minimize(loss, global_step=global_steps) # 训练上的真解值和训练结果的误差 if R['PDE_type'] == 'general_Laplace' or R['PDE_type'] == 'pLaplace_explicit' \ or R['PDE_type'] == 'Possion_Boltzmann' or R['PDE_type'] == 'Convection_diffusion': U_true = u_true(X_it, Y_it) train_mse = tf.reduce_mean(tf.square(U_true - UNN)) train_rel = train_mse / tf.reduce_mean(tf.square(U_true)) else: train_mse = tf.constant(0.0) train_rel = tf.constant(0.0) t0 = time.time() loss_it_all, loss_bd_all, loss_all, train_mse_all, train_rel_all = [], [], [], [], [] # 空列表, 使用 append() 添加元素 test_mse_all, test_rel_all = [], [] test_epoch = [] if R['testData_model'] == 'random_generate': # 生成测试数据,用于测试训练后的网络 test_bach_size = 1600 size2test = 40 # test_bach_size = 4900 # size2test = 70 # test_bach_size = 10000 # size2test = 100 # test_bach_size = 40000 # size2test = 200 test_xy_bach = DNN_data.rand_it(test_bach_size, input_dim, region_lb, region_rt) saveData.save_testData_or_solus2mat(test_xy_bach, dataName='testXY', outPath=R['FolderName']) else: if R['PDE_type'] == 'pLaplace_implicit' or R['PDE_type'] == 'pLaplace_explicit': test_xy_bach = Load_data2Mat.get_data2pLaplace(equation_name=R['equa_name'], mesh_number=mesh_number) size2batch = np.shape(test_xy_bach)[0] size2test = int(np.sqrt(size2batch)) saveData.save_meshData2mat(test_xy_bach, dataName='meshXY', mesh_number=mesh_number, outPath=R['FolderName']) elif R['PDE_type'] == 'Possion_Boltzmann': if region_lb == (-1.0) and region_rt == 1.0: name2data_file = '11' else: name2data_file = '01' test_xy_bach = Load_data2Mat.get_meshData2Boltzmann(domain_lr=name2data_file, mesh_number=mesh_number) size2batch = np.shape(test_xy_bach)[0] size2test = int(np.sqrt(size2batch)) saveData.save_meshData2mat(test_xy_bach, dataName='meshXY', mesh_number=mesh_number, outPath=R['FolderName']) elif R['PDE_type'] == 'Convection_diffusion': if region_lb == (-1.0) and region_rt == 1.0: name2data_file = '11' else: name2data_file = '01' test_xy_bach = Load_data2Mat.get_meshData2Boltzmann(domain_lr=name2data_file, mesh_number=mesh_number) size2batch = np.shape(test_xy_bach)[0] size2test = int(np.sqrt(size2batch)) saveData.save_meshData2mat(test_xy_bach, dataName='meshXY', mesh_number=mesh_number, outPath=R['FolderName']) else: test_xy_bach = Load_data2Mat.get_randomData2mat(dim=input_dim, data_path='dataMat_highDim') size2batch = np.shape(test_xy_bach)[0] size2test = int(np.sqrt(size2batch)) # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了 config = tf.compat.v1.ConfigProto(allow_soft_placement=True) # 创建sess的时候对sess进行参数配置 config.gpu_options.allow_growth = True # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。 config.allow_soft_placement = True # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行 with tf.compat.v1.Session(config=config) as sess: sess.run(tf.compat.v1.global_variables_initializer()) tmp_lr = learning_rate for i_epoch in range(R['max_epoch'] + 1): xy_it_batch = DNN_data.rand_it(batchsize_it, input_dim, region_a=region_lb, region_b=region_rt) xl_bd_batch, xr_bd_batch, yb_bd_batch, yt_bd_batch = DNN_data.rand_bd_2D( batchsize_bd, input_dim, region_a=region_lb, region_b=region_rt) tmp_lr = tmp_lr * (1 - lr_decay) if R['activate_penalty2bd_increase'] == 1: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_bd = bd_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_bd = 10 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_bd = 50 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_bd = 100 * bd_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_bd = 200 * bd_penalty_init else: temp_penalty_bd = 500 * bd_penalty_init else: temp_penalty_bd = bd_penalty_init _, loss_it_tmp, loss_bd_tmp, loss_tmp, train_mse_tmp, train_rel_tmp, pwb = sess.run( [train_my_loss, loss_it, loss_bd, loss, train_mse, train_rel, PWB], feed_dict={XY_it: xy_it_batch, XY_left: xl_bd_batch, XY_right: xr_bd_batch, XY_bottom: yb_bd_batch, XY_top: yt_bd_batch, in_learning_rate: tmp_lr, boundary_penalty: temp_penalty_bd}) loss_it_all.append(loss_it_tmp) loss_bd_all.append(loss_bd_tmp) loss_all.append(loss_tmp) train_mse_all.append(train_mse_tmp) train_rel_all.append(train_rel_tmp) if i_epoch % 1000 == 0: run_times = time.time() - t0 DNN_Log_Print.print_and_log_train_one_epoch( i_epoch, run_times, tmp_lr, temp_penalty_bd, pwb, loss_it_tmp, loss_bd_tmp, loss_tmp, train_mse_tmp, train_rel_tmp, log_out=log_fileout) # --------------------------- test network ---------------------------------------------- test_epoch.append(i_epoch / 1000) if R['PDE_type'] == 'general_Laplace' or R['PDE_type'] == 'pLaplace_explicit' or \ R['PDE_type'] == 'Possion_Boltzmann' or R['PDE_type'] == 'Convection_diffusion': u_true2test, unn2test = sess.run([U_true, UNN], feed_dict={XY_it: test_xy_bach}) else: u_true2test = u_true unn2test = sess.run(UNN, feed_dict={XY_it: test_xy_bach}) point_square_error = np.square(u_true2test - unn2test) mse2test = np.mean(point_square_error) test_mse_all.append(mse2test) res2test = mse2test / np.mean(np.square(u_true2test)) test_rel_all.append(res2test) DNN_Log_Print.print_and_log_test_one_epoch(mse2test, res2test, log_out=log_fileout) # ------------------- save the testing results into mat file and plot them ------------------------- saveData.save_trainLoss2mat_1actFunc(loss_it_all, loss_bd_all, loss_all, actName=act_func, outPath=R['FolderName']) saveData.save_train_MSE_REL2mat(train_mse_all, train_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_it_all, lossType='loss_it', seedNo=R['seed'], outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_bd_all, lossType='loss_bd', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_all, lossType='loss', seedNo=R['seed'], outPath=R['FolderName']) saveData.save_train_MSE_REL2mat(train_mse_all, train_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_MSE_REL_1act_func(train_mse_all, train_rel_all, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) # ---------------------- save testing results to mat files, then plot them -------------------------------- saveData.save_2testSolus2mat(u_true2test, unn2test, actName='utrue', actName1=act_func, outPath=R['FolderName']) plotData.plot_Hot_solution2test(u_true2test, size_vec2mat=size2test, actName='Utrue', seedNo=R['seed'], outPath=R['FolderName']) plotData.plot_Hot_solution2test(unn2test, size_vec2mat=size2test, actName=act_func, seedNo=R['seed'], outPath=R['FolderName']) saveData.save_testMSE_REL2mat(test_mse_all, test_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTest_MSE_REL(test_mse_all, test_rel_all, test_epoch, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) saveData.save_test_point_wise_err2mat(point_square_error, actName=act_func, outPath=R['FolderName']) plotData.plot_Hot_point_wise_err(point_square_error, size_vec2mat=size2test, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'])
def solve_SIR2COVID(R): log_out_path = R['FolderName'] # 将路径从字典 R 中提取出来 if not os.path.exists(log_out_path): # 判断路径是否已经存在 os.mkdir(log_out_path) # 无 log_out_path 路径,创建一个 log_out_path 路径 log_fileout = open(os.path.join(log_out_path, 'log_train.txt'), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 DNN_LogPrint.dictionary_out2file(R, log_fileout) log2trianSolus = open(os.path.join(log_out_path, 'train_Solus.txt'), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 log2testSolus = open(os.path.join(log_out_path, 'test_Solus.txt'), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 log2testSolus2 = open(os.path.join(log_out_path, 'test_Solus_temp.txt'), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 log2testParas = open(os.path.join(log_out_path, 'test_Paras.txt'), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 trainSet_szie = R['size2train'] batchSize_train = R['batch_size2train'] batchSize_test = R['batch_size2test'] pt_penalty_init = R[ 'init_penalty2predict_true'] # Regularization parameter for difference of predict and true wb_penalty = R['regular_weight'] # Regularization parameter for weights lr_decay = R['lr_decay'] learning_rate = R['learning_rate'] act_func2SIR = R['act2sir'] act_func2paras = R['act2paras'] input_dim = R['input_dim'] out_dim = R['output_dim'] flag2S = 'WB2S' flag2I = 'WB2I' flag2R = 'WB2R' flag2beta = 'WB2beta' flag2gamma = 'WB2gamma' hidden_sir = R['hidden2SIR'] hidden_para = R['hidden2para'] Weight2S, Bias2S = DNN.init_DNN(size2in=input_dim, size2out=out_dim, hiddens=hidden_sir, scope=flag2S, opt2Init=R['SIR_opt2init_NN']) Weight2I, Bias2I = DNN.init_DNN(size2in=input_dim, size2out=out_dim, hiddens=hidden_sir, scope=flag2I, opt2Init=R['SIR_opt2init_NN']) Weight2R, Bias2R = DNN.init_DNN(size2in=input_dim, size2out=out_dim, hiddens=hidden_sir, scope=flag2R, opt2Init=R['SIR_opt2init_NN']) Weight2beta, Bias2beta = DNN.init_DNN(size2in=input_dim, size2out=out_dim, hiddens=hidden_para, scope=flag2beta, opt2Init=R['Para_opt2init_NN']) Weight2gamma, Bias2gamma = DNN.init_DNN(size2in=input_dim, size2out=out_dim, hiddens=hidden_para, scope=flag2gamma, opt2Init=R['Para_opt2init_NN']) global_steps = tf.Variable(0, trainable=False) with tf.device('/gpu:%s' % (R['gpuNo'])): with tf.variable_scope('vscope', reuse=tf.AUTO_REUSE): T_it = tf.placeholder(tf.float32, name='T_it', shape=[None, input_dim]) I_observe = tf.placeholder(tf.float32, name='I_observe', shape=[None, input_dim]) N_observe = tf.placeholder(tf.float32, name='N_observe', shape=[None, input_dim]) predict_true_penalty = tf.placeholder_with_default(input=1e3, shape=[], name='bd_p') in_learning_rate = tf.placeholder_with_default(input=1e-5, shape=[], name='lr') train_opt = tf.placeholder_with_default(input=True, shape=[], name='train_opt') SNN_temp = DNN.PDE_DNN(x=T_it, hiddenLayer=hidden_sir, Weigths=Weight2S, Biases=Bias2S, DNNmodel=R['model2sir'], activation=act_func2SIR, freqs=R['freqs']) INN_temp = DNN.PDE_DNN(x=T_it, hiddenLayer=hidden_sir, Weigths=Weight2I, Biases=Bias2I, DNNmodel=R['model2sir'], activation=act_func2SIR, freqs=R['freqs']) RNN_temp = DNN.PDE_DNN(x=T_it, hiddenLayer=hidden_sir, Weigths=Weight2R, Biases=Bias2R, DNNmodel=R['model2sir'], activation=act_func2SIR, freqs=R['freqs']) in_beta = DNN.PDE_DNN(x=T_it, hiddenLayer=hidden_para, Weigths=Weight2beta, Biases=Bias2beta, DNNmodel=R['model2paras'], activation=act_func2paras, freqs=R['freqs']) in_gamma = DNN.PDE_DNN(x=T_it, hiddenLayer=hidden_para, Weigths=Weight2gamma, Biases=Bias2gamma, DNNmodel=R['model2paras'], activation=act_func2paras, freqs=R['freqs']) # Remark: beta, gamma,S_NN.I_NN,R_NN都应该是正的. beta.1--15之间,gamma在(0,1)使用归一化的话S_NN.I_NN,R_NN都在[0,1)范围内 if (R['total_population'] == R['scale_population']) and R['scale_population'] != 1: beta = in_beta gamma = in_gamma # SNN = SNN_temp # INN = INN_temp # RNN = RNN_temp # SNN = tf.nn.relu(SNN_temp) # INN = tf.nn.relu(INN_temp) # RNN = tf.nn.relu(RNN_temp) # SNN = tf.abs(SNN_temp) # INN = tf.abs(INN_temp) # RNN = tf.abs(RNN_temp) # SNN = DNN_base.gauss(SNN_temp) # INN = tf.square(INN_temp) # RNN = tf.square(RNN_temp) # SNN = DNN_base.gauss(SNN_temp) # INN = tf.square(INN_temp) # RNN = tf.nn.sigmoid(RNN_temp) # SNN = DNN_base.gauss(SNN_temp) # INN = tf.nn.sigmoid(INN_temp) # RNN = tf.square(RNN_temp) # SNN = tf.sqrt(tf.square(SNN_temp)) # INN = tf.sqrt(tf.square(INN_temp)) # RNN = tf.sqrt(tf.square(RNN_temp)) SNN = tf.nn.sigmoid(SNN_temp) INN = tf.nn.sigmoid(INN_temp) RNN = tf.nn.sigmoid(RNN_temp) else: beta = in_beta gamma = in_gamma # SNN = SNN_temp # INN = INN_temp # RNN = RNN_temp # SNN = tf.nn.relu(SNN_temp) # INN = tf.nn.relu(INN_temp) # RNN = tf.nn.relu(RNN_temp) SNN = tf.nn.sigmoid(SNN_temp) INN = tf.nn.sigmoid(INN_temp) RNN = tf.nn.sigmoid(RNN_temp) N_NN = SNN + INN + RNN dSNN2t = tf.gradients(SNN, T_it)[0] dINN2t = tf.gradients(INN, T_it)[0] dRNN2t = tf.gradients(RNN, T_it)[0] dN_NN2t = tf.gradients(N_NN, T_it)[0] temp_snn2t = -beta * SNN * INN temp_inn2t = beta * SNN * INN - gamma * INN temp_rnn2t = gamma * INN if str.lower( R['loss_function']) == 'l2_loss' and R['scale_up'] == 0: # LossS_Net_obs = tf.reduce_mean(tf.square(SNN - S_observe)) LossI_Net_obs = tf.reduce_mean(tf.square(INN - I_observe)) # LossR_Net_obs = tf.reduce_mean(tf.square(RNN - R_observe)) LossN_Net_obs = tf.reduce_mean(tf.square(N_NN - N_observe)) Loss2dS = tf.reduce_mean(tf.square(dSNN2t - temp_snn2t)) Loss2dI = tf.reduce_mean(tf.square(dINN2t - temp_inn2t)) Loss2dR = tf.reduce_mean(tf.square(dRNN2t - temp_rnn2t)) Loss2dN = tf.reduce_mean(tf.square(dN_NN2t)) elif str.lower( R['loss_function']) == 'l2_loss' and R['scale_up'] == 1: scale_up = R['scale_factor'] # LossS_Net_obs = tf.reduce_mean(tf.square(scale_up*SNN - scale_up*S_observe)) LossI_Net_obs = tf.reduce_mean( tf.square(scale_up * INN - scale_up * I_observe)) # LossR_Net_obs = tf.reduce_mean(tf.square(scale_up*RNN - scale_up*R_observe)) LossN_Net_obs = tf.reduce_mean( tf.square(scale_up * N_NN - scale_up * N_observe)) Loss2dS = tf.reduce_mean( tf.square(scale_up * dSNN2t - scale_up * temp_snn2t)) Loss2dI = tf.reduce_mean( tf.square(scale_up * dINN2t - scale_up * temp_inn2t)) Loss2dR = tf.reduce_mean( tf.square(scale_up * dRNN2t - scale_up * temp_rnn2t)) Loss2dN = tf.reduce_mean(tf.square(scale_up * dN_NN2t)) elif str.lower(R['loss_function']) == 'lncosh_loss': # LossS_Net_obs = tf.reduce_mean(tf.ln(tf.cosh(SNN - S_observe))) LossI_Net_obs = tf.reduce_mean(tf.log(tf.cosh(INN - I_observe))) # LossR_Net_obs = tf.reduce_mean(tf.log(tf.cosh(RNN - R_observe))) LossN_Net_obs = tf.reduce_mean( tf.log(tf.cosh(N_NN - N_observe))) Loss2dS = tf.reduce_mean(tf.log(tf.cosh(dSNN2t - temp_snn2t))) Loss2dI = tf.reduce_mean(tf.log(tf.cosh(dINN2t - temp_inn2t))) Loss2dR = tf.reduce_mean(tf.log(tf.cosh(dRNN2t - temp_rnn2t))) Loss2dN = tf.reduce_mean(tf.log(tf.cosh(dN_NN2t))) if R['regular_weight_model'] == 'L1': regular_WB2S = DNN_base.regular_weights_biases_L1( Weight2S, Bias2S) regular_WB2I = DNN_base.regular_weights_biases_L1( Weight2I, Bias2I) regular_WB2R = DNN_base.regular_weights_biases_L1( Weight2R, Bias2R) regular_WB2Beta = DNN_base.regular_weights_biases_L1( Weight2beta, Bias2beta) regular_WB2Gamma = DNN_base.regular_weights_biases_L1( Weight2gamma, Bias2gamma) elif R['regular_weight_model'] == 'L2': regular_WB2S = DNN_base.regular_weights_biases_L2( Weight2S, Bias2S) regular_WB2I = DNN_base.regular_weights_biases_L2( Weight2I, Bias2I) regular_WB2R = DNN_base.regular_weights_biases_L2( Weight2R, Bias2R) regular_WB2Beta = DNN_base.regular_weights_biases_L2( Weight2beta, Bias2beta) regular_WB2Gamma = DNN_base.regular_weights_biases_L2( Weight2gamma, Bias2gamma) else: regular_WB2S = tf.constant(0.0) regular_WB2I = tf.constant(0.0) regular_WB2R = tf.constant(0.0) regular_WB2Beta = tf.constant(0.0) regular_WB2Gamma = tf.constant(0.0) PWB2S = wb_penalty * regular_WB2S PWB2I = wb_penalty * regular_WB2I PWB2R = wb_penalty * regular_WB2R PWB2Beta = wb_penalty * regular_WB2Beta PWB2Gamma = wb_penalty * regular_WB2Gamma Loss2S = Loss2dS + PWB2S Loss2I = predict_true_penalty * LossI_Net_obs + Loss2dI + PWB2I Loss2R = Loss2dR + PWB2R Loss2N = predict_true_penalty * LossN_Net_obs + Loss2dN Loss = Loss2S + Loss2I + Loss2R + Loss2N + PWB2Beta + PWB2Gamma my_optimizer = tf.train.AdamOptimizer(in_learning_rate) if R['train_model'] == 'train_group': train_Loss2S = my_optimizer.minimize(Loss2S, global_step=global_steps) train_Loss2I = my_optimizer.minimize(Loss2I, global_step=global_steps) train_Loss2R = my_optimizer.minimize(Loss2R, global_step=global_steps) train_Loss2N = my_optimizer.minimize(Loss2N, global_step=global_steps) train_Loss = my_optimizer.minimize(Loss, global_step=global_steps) train_Losses = tf.group(train_Loss2S, train_Loss2I, train_Loss2R, train_Loss2N, train_Loss) elif R['train_model'] == 'train_union_loss': train_Losses = my_optimizer.minimize(Loss, global_step=global_steps) t0 = time.time() loss_s_all, loss_i_all, loss_r_all, loss_n_all, loss_all = [], [], [], [], [] test_epoch = [] test_mse2I_all, test_rel2I_all = [], [] # filename = 'data2csv/Wuhan.csv' # filename = 'data2csv/Italia_data.csv' filename = 'data2csv/Korea_data.csv' date, data = DNN_data.load_csvData(filename) assert (trainSet_szie + batchSize_test <= len(data)) train_date, train_data2i, test_date, test_data2i = \ DNN_data.split_csvData2train_test(date, data, size2train=trainSet_szie, normalFactor=R['scale_population']) if R['scale_population'] == 1: nbatch2train = np.ones(batchSize_train, dtype=np.float32) * float( R['total_population']) elif (R['total_population'] != R['scale_population']) and R['scale_population'] != 1: nbatch2train = np.ones(batchSize_train, dtype=np.float32) * ( float(R['total_population']) / float(R['scale_population'])) elif (R['total_population'] == R['scale_population']) and R['scale_population'] != 1: nbatch2train = np.ones(batchSize_train, dtype=np.float32) # 对于时间数据来说,验证模型的合理性,要用连续的时间数据验证 test_t_bach = DNN_data.sample_testDays_serially(test_date, batchSize_test) i_obs_test = DNN_data.sample_testData_serially(test_data2i, batchSize_test, normalFactor=1.0) print('The test data about i:\n', str(np.transpose(i_obs_test))) print('\n') DNN_tools.log_string( 'The test data about i:\n%s\n' % str(np.transpose(i_obs_test)), log_fileout) # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了 config = tf.ConfigProto(allow_soft_placement=True) # 创建sess的时候对sess进行参数配置 config.gpu_options.allow_growth = True # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。 config.allow_soft_placement = True # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行 with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) tmp_lr = learning_rate for i_epoch in range(R['max_epoch'] + 1): t_batch, i_obs = \ DNN_data.randSample_Normalize_existData(train_date, train_data2i, batchsize=batchSize_train, normalFactor=1.0, sampling_opt=R['opt2sample']) n_obs = nbatch2train.reshape(batchSize_train, 1) tmp_lr = tmp_lr * (1 - lr_decay) train_option = True if R['activate_stage_penalty'] == 1: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_pt = pt_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_pt = 10 * pt_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_pt = 50 * pt_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_pt = 100 * pt_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_pt = 200 * pt_penalty_init else: temp_penalty_pt = 500 * pt_penalty_init elif R['activate_stage_penalty'] == 2: if i_epoch < int(R['max_epoch'] / 3): temp_penalty_pt = pt_penalty_init elif i_epoch < 2 * int(R['max_epoch'] / 3): temp_penalty_pt = 10 * pt_penalty_init else: temp_penalty_pt = 50 * pt_penalty_init else: temp_penalty_pt = pt_penalty_init _, loss_s, loss_i, loss_r, loss_n, loss, pwb2s, pwb2i, pwb2r = sess.run( [ train_Losses, Loss2S, Loss2I, Loss2R, Loss2N, Loss, PWB2S, PWB2I, PWB2R ], feed_dict={ T_it: t_batch, I_observe: i_obs, N_observe: n_obs, in_learning_rate: tmp_lr, train_opt: train_option, predict_true_penalty: temp_penalty_pt }) loss_s_all.append(loss_s) loss_i_all.append(loss_i) loss_r_all.append(loss_r) loss_n_all.append(loss_n) loss_all.append(loss) if i_epoch % 1000 == 0: # 以下代码为输出训练过程中 S_NN, I_NN, R_NN, beta, gamma 的训练结果 DNN_LogPrint.print_and_log2train(i_epoch, time.time() - t0, tmp_lr, temp_penalty_pt, pwb2s, pwb2i, pwb2r, loss_s, loss_i, loss_r, loss_n, loss, log_out=log_fileout) s_nn2train, i_nn2train, r_nn2train = sess.run( [SNN, INN, RNN], feed_dict={T_it: np.reshape(train_date, [-1, 1])}) # 以下代码为输出训练过程中 S_NN, I_NN, R_NN, beta, gamma 的测试结果 test_epoch.append(i_epoch / 1000) train_option = False s_nn2test, i_nn2test, r_nn2test, beta_test, gamma_test = sess.run( [SNN, INN, RNN, beta, gamma], feed_dict={ T_it: test_t_bach, train_opt: train_option }) point_ERR2I = np.square(i_nn2test - i_obs_test) test_mse2I = np.mean(point_ERR2I) test_mse2I_all.append(test_mse2I) test_rel2I = test_mse2I / np.mean(np.square(i_obs_test)) test_rel2I_all.append(test_rel2I) DNN_tools.print_and_log_test_one_epoch(test_mse2I, test_rel2I, log_out=log_fileout) DNN_tools.log_string( '------------------The epoch----------------------: %s\n' % str(i_epoch), log2testSolus) DNN_tools.log_string( 'The test result for s:\n%s\n' % str(np.transpose(s_nn2test)), log2testSolus) DNN_tools.log_string( 'The test result for i:\n%s\n' % str(np.transpose(i_nn2test)), log2testSolus) DNN_tools.log_string( 'The test result for r:\n%s\n\n' % str(np.transpose(r_nn2test)), log2testSolus) # --------以下代码为输出训练过程中 S_NN_temp, I_NN_temp, R_NN_temp, in_beta, in_gamma 的测试结果------------- s_nn_temp2test, i_nn_temp2test, r_nn_temp2test, in_beta_test, in_gamma_test = sess.run( [SNN_temp, INN_temp, RNN_temp, in_beta, in_gamma], feed_dict={ T_it: test_t_bach, train_opt: train_option }) DNN_tools.log_string( '------------------The epoch----------------------: %s\n' % str(i_epoch), log2testSolus2) DNN_tools.log_string( 'The test result for s_temp:\n%s\n' % str(np.transpose(s_nn_temp2test)), log2testSolus2) DNN_tools.log_string( 'The test result for i_temp:\n%s\n' % str(np.transpose(i_nn_temp2test)), log2testSolus2) DNN_tools.log_string( 'The test result for r_temp:\n%s\n\n' % str(np.transpose(r_nn_temp2test)), log2testSolus2) DNN_tools.log_string( '------------------The epoch----------------------: %s\n' % str(i_epoch), log2testParas) DNN_tools.log_string( 'The test result for in_beta:\n%s\n' % str(np.transpose(in_beta_test)), log2testParas) DNN_tools.log_string( 'The test result for in_gamma:\n%s\n' % str(np.transpose(in_gamma_test)), log2testParas) DNN_tools.log_string( 'The train result for S:\n%s\n' % str(np.transpose(s_nn2train)), log2trianSolus) DNN_tools.log_string( 'The train result for I:\n%s\n' % str(np.transpose(i_nn2train)), log2trianSolus) DNN_tools.log_string( 'The train result for R:\n%s\n\n' % str(np.transpose(r_nn2train)), log2trianSolus) saveData.true_value2convid(train_data2i, name2Array='itrue2train', outPath=R['FolderName']) saveData.save_Solu2mat_Covid(s_nn2train, name2solus='s2train', outPath=R['FolderName']) saveData.save_Solu2mat_Covid(i_nn2train, name2solus='i2train', outPath=R['FolderName']) saveData.save_Solu2mat_Covid(r_nn2train, name2solus='r2train', outPath=R['FolderName']) saveData.save_SIR_trainLoss2mat_Covid(loss_s_all, loss_i_all, loss_r_all, loss_n_all, actName=act_func2SIR, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_s_all, lossType='loss2s', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_i_all, lossType='loss2i', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_r_all, lossType='loss2r', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_n_all, lossType='loss2n', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) saveData.true_value2convid(i_obs_test, name2Array='i_true2test', outPath=R['FolderName']) saveData.save_testMSE_REL2mat(test_mse2I_all, test_rel2I_all, actName='Infected', outPath=R['FolderName']) plotData.plotTest_MSE_REL(test_mse2I_all, test_rel2I_all, test_epoch, actName='Infected', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) saveData.save_SIR_testSolus2mat_Covid(s_nn2test, i_nn2test, r_nn2test, name2solus1='snn2test', name2solus2='inn2test', name2solus3='rnn2test', outPath=R['FolderName']) saveData.save_SIR_testParas2mat_Covid(beta_test, gamma_test, name2para1='beta2test', name2para2='gamma2test', outPath=R['FolderName']) plotData.plot_testSolu2convid(i_obs_test, name2solu='i_true', coord_points2test=test_t_bach, outPath=R['FolderName']) plotData.plot_testSolu2convid(s_nn2test, name2solu='s_test', coord_points2test=test_t_bach, outPath=R['FolderName']) plotData.plot_testSolu2convid(i_nn2test, name2solu='i_test', coord_points2test=test_t_bach, outPath=R['FolderName']) plotData.plot_testSolu2convid(r_nn2test, name2solu='r_test', coord_points2test=test_t_bach, outPath=R['FolderName']) plotData.plot_testSolus2convid(i_obs_test, i_nn2test, name2solu1='i_true', name2solu2='i_test', coord_points2test=test_t_bach, seedNo=R['seed'], outPath=R['FolderName']) plotData.plot_testSolu2convid(beta_test, name2solu='beta_test', coord_points2test=test_t_bach, outPath=R['FolderName']) plotData.plot_testSolu2convid(gamma_test, name2solu='gamma_test', coord_points2test=test_t_bach, outPath=R['FolderName'])
def solve_Integral_Equa(R): log_out_path = R['FolderName'] # 将路径从字典 R 中提取出来 if not os.path.exists(log_out_path): # 判断路径是否已经存在 os.mkdir(log_out_path) # 无 log_out_path 路径,创建一个 log_out_path 路径 outFile2para_name = '%s_%s.txt' % ('para2', 'beta') logfile_name = '%s%s.txt' % ('log2', R['activate_func']) log_fileout = open(os.path.join(log_out_path, logfile_name), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 para_outFile = open(os.path.join(log_out_path, outFile2para_name), 'w') # 在这个路径下创建并打开一个可写的 para_outFile.txt文件 dictionary_out2file(R, log_fileout) # 积分方程问题需要的设置 batchsize = R['batch_size2integral'] batchsize2aux = R['batch_size2auxiliary'] wb_regular = R['regular_weight_biases'] lr_decay = R['learning_rate_decay'] learning_rate = R['learning_rate'] hidden_layers = R['hidden_layers'] act_func = R['activate_func'] # ------- set the problem --------- data_indim = R['input_dim'] data_outdim = R['output_dim'] para_dim = R['estimate_para_dim'] # 初始化权重和和偏置的模式 flag2bnn = 'bnn' input_dim = 1 if R['model'] == 'PDE_DNN_Cos_C_Sin_Base': W2b, B2b = DNN_base.initialize_NN_random_normal2_CS(input_dim, para_dim, hidden_layers, flag2bnn) else: W2b, B2b = DNN_base.initialize_NN_random_normal2(input_dim, para_dim, hidden_layers, flag2bnn) global_steps = tf.Variable(0, trainable=False) with tf.device('/gpu:%s' % (R['gpuNo'])): with tf.variable_scope('vscope', reuse=tf.AUTO_REUSE): X = tf.placeholder(tf.float32, name='X_recv', shape=[batchsize, data_indim]) Y = tf.placeholder(tf.float32, name='Y_recv', shape=[batchsize, data_indim]) R2XY = tf.placeholder(tf.float32, name='R2XY_recv', shape=[batchsize, data_indim]) y_aux = tf.placeholder(tf.float32, name='y_auxiliary', shape=[batchsize2aux, 1]) beta = tf.Variable(tf.random.uniform([1, para_dim]), dtype='float32', name='beta') # beta = tf.Variable([[0.25, -0.5]], dtype='float32', name='beta') # beta = tf.constant([[0.25, -0.5]], dtype=tf.float32, name='beta') tfOne = tf.placeholder(tf.float32, shape=[1, 1], name='tfOne') inline_lr = tf.placeholder_with_default(input=1e-5, shape=[], name='inline_learning_rate') # 供选择的网络模式 if R['model'] == str('DNN'): b_NN2y = DNN_base.PDE_DNN(y_aux, W2b, B2b, hidden_layers, activate_name=act_func) # b_NN2Y = DNN_base.PDE_DNN(Y, W2b, B2b, hidden_layers, activate_name=act_func) elif R['model'] == 'DNN_scale': freq = R['freqs'] b_NN2y = DNN_base.PDE_DNN_scale(y_aux, W2b, B2b, hidden_layers, freq, activate_name=act_func) # b_NN2Y = DNN_base.PDE_DNN_scale(Y, W2b, B2b, hidden_layers, freq, activate_name=act_func) elif R['model'] == 'DNN_adapt_scale': freq = R['freqs'] b_NN2y = DNN_base.PDE_DNN_adapt_scale(y_aux, W2b, B2b, hidden_layers, freq, activate_name=act_func) # b_NN2Y = DNN_base.PDE_DNN_adapt_scale(Y, W2b, B2b, hidden_layers, freq, activate_name=act_func) elif R['model'] == 'DNN_FourierBase': freq = R['freqs'] b_NN2y = DNN_base.PDE_DNN_FourierBase(y_aux, W2b, B2b, hidden_layers, freq, activate_name=act_func) # b_NN2Y = DNN_base.PDE_DNN_FourierBase(Y, W2b, B2b, hidden_layers, freq, activate_name=act_func) elif R['model'] == 'DNN_Cos_C_Sin_Base': freq = R['freqs'] b_NN2y = DNN_base.PDE_DNN_Cos_C_Sin_Base(y_aux, W2b, B2b, hidden_layers, freq, activate_name=act_func) # b_NN2Y = DNN_base.PDE_DNN_Cos_C_Sin_Base(Y, W2b, B2b, hidden_layers, freq, activate_name=act_func) # 下面怎么把循环改为向量操作呢? sum2bleft = tf.zeros(shape=[1, 1], dtype=tf.float32, name='01') sum2bright = tf.zeros(shape=[1, 1], dtype=tf.float32, name='02') # 使用循环将Xi取出来,然后带入方程计算b(·:beta),需要对i累加,最后取均值 for i in range(batchsize): Xtemp = tf.reshape(X[i], shape=[1, 1]) # Xi取出 OneX = tf.concat([tfOne, Xtemp], axis=-1) # 1 行 (1+dim) 列 XiTrans = tf.transpose(OneX, [1, 0]) # (1,Xi) fYX_y = my_normal(t=y_aux-tf.matmul(beta, XiTrans)) # fY|X在y处的取值,fY|X(y) dfYX_beta = tf.matmul(my_normal(t=y_aux-tf.matmul(beta, XiTrans))*(y_aux-tf.matmul(beta, XiTrans)), OneX) # fY|X(y)对beta的导数 # beta 是 1 行 para_dim 列 fyx_1minus_phi_integral = tf.reduce_mean(fYX_y * (1 - pi_star(t=y_aux)), axis=0) # fY|X(t)*(1-pi(t))的积分 dfyx_phi_integral = tf.reduce_mean(dfYX_beta * pi_star(t=y_aux), axis=0) # diff_fY|X(y)*pi(t)的积分 ceof_vec2left = dfyx_phi_integral/fyx_1minus_phi_integral sum2bleft = sum2bleft + dfYX_beta + ceof_vec2left*fYX_y b_fyx_phi_integral = tf.reduce_mean(b_NN2y*fYX_y*pi_star(t=y_aux), axis=0) # b(t, beta)*fY|X(t)*pi(t)的积分 ceof_vec2right = b_fyx_phi_integral / fyx_1minus_phi_integral sum2bright = sum2bright + b_NN2y * fYX_y + ceof_vec2right * fYX_y bleft = sum2bleft / batchsize # (1/N)sum{i=1:i=N(·)} bright = sum2bright / batchsize # (1/N)sum{i=1:i=N(·)} loss2b = tf.reduce_mean(tf.reduce_mean(tf.square(bleft - bright), axis=0)) sum2Seff = tf.zeros(shape=[1, 1], dtype=tf.float32, name='03') for i in range(batchsize): Xtemp = tf.reshape(X[i], shape=[1, 1]) OneX = tf.concat([tfOne, Xtemp], axis=-1) # 1 行 (1+dim) 列 XiTrans = tf.transpose(OneX, [1, 0]) fYX2y = my_normal(t=y_aux - tf.matmul(beta, XiTrans)) # fY|X在y处的取值,fY|X(y) Yi = tf.reshape(Y[i], shape=[1, 1]) # Yi fYX2Y = my_normal(t=Yi-tf.matmul(beta, XiTrans)) # fY|X在Yi处的取值,fY|X(Yi) dfYX_beta2Y = tf.matmul(my_normal(t=Yi-tf.matmul(beta, XiTrans))*(Yi-tf.matmul(beta, XiTrans)), OneX) # diff_fY|X(Yi) dfYX_beta2y = tf.matmul(my_normal(t=y_aux - tf.matmul(beta, XiTrans)) * (y_aux - tf.matmul(beta, XiTrans)), OneX) # diff_fY|X(t) fyx_1minus_phi_integral = tf.reduce_mean(fYX2y * (1 - pi_star(t=y_aux)), axis=0) # fY|X(t)*(1-pi(t))的积分 dfyx_phi_integral = tf.reduce_mean(dfYX_beta2y * pi_star(t=y_aux), axis=0) # diff_fY|X(y)*pi(t)的积分 fyx_b_phi_integral = tf.reduce_mean(fYX2y * b_NN2y * pi_star(t=y_aux), axis=0) # fY|X(t)*b(t, beta)*pi(t)的积分 R2XY_i = tf.reshape(R2XY[i], shape=[1, -1]) # Ri Seff1 = (R2XY_i/fYX2Y) * dfYX_beta2Y - ((1-R2XY_i)/fyx_1minus_phi_integral) * dfyx_phi_integral # S^*_beta if R['model'] == 'DNN': b_NN2Yi = DNN_base.PDE_DNN(Yi, W2b, B2b, hidden_layers, activate_name=act_func) elif R['model'] == 'DNN_scale': freq = R['freqs'] b_NN2Yi = DNN_base.PDE_DNN_scale(Yi, W2b, B2b, hidden_layers, freq, activate_name=act_func) elif R['model'] == 'DNN_adapt_scale': freq = R['freqs'] b_NN2Yi = DNN_base.PDE_DNN_adapt_scale(Yi, W2b, B2b, hidden_layers, freq, activate_name=act_func) elif R['model'] == 'DNN_FourierBase': freq = R['freqs'] b_NN2Yi = DNN_base.PDE_DNN_FourierBase(Yi, W2b, B2b, hidden_layers, freq, activate_name=act_func) elif R['model'] == 'DNN_Cos_C_Sin_Base': freq = R['freqs'] b_NN2Yi = DNN_base.PDE_DNN_Cos_C_Sin_Base(Yi, W2b, B2b, hidden_layers, freq, activate_name=act_func) Seff2 = R2XY_i * tf.reshape(b_NN2Yi, shape=[1, -1]) Seff3 = (1-R2XY_i) * (fyx_b_phi_integral/fyx_1minus_phi_integral) Seff = Seff1 - Seff2 + Seff3 sum2Seff = sum2Seff + Seff loss2s_temp = sum2Seff/batchsize loss2Seff = tf.reduce_mean(tf.square(loss2s_temp)) if R['regular_weight_model'] == 'L1': regular_WB2b = DNN_base.regular_weights_biases_L1(W2b, B2b) elif R['regular_weight_model'] == 'L2': regular_WB2b = DNN_base.regular_weights_biases_L2(W2b, B2b) else: regular_WB2b = tf.constant(0.0) penalty_WB = wb_regular * regular_WB2b loss = loss2b + loss2Seff + penalty_WB # 要优化的loss function my_optimizer = tf.train.AdamOptimizer(inline_lr) if R['train_group'] == 0: train_my_loss = my_optimizer.minimize(loss, global_step=global_steps) if R['train_group'] == 1: train_op1 = my_optimizer.minimize(loss2b, global_step=global_steps) train_op2 = my_optimizer.minimize(loss2Seff, global_step=global_steps) train_op3 = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.group(train_op1, train_op2, train_op3) elif R['train_group'] == 2: train_op1 = my_optimizer.minimize(loss2b, global_step=global_steps) train_op2 = my_optimizer.minimize(loss2Seff, global_step=global_steps) train_my_loss = tf.group(train_op1, train_op2) t0 = time.time() loss_b_all, loss_seff_all, loss_all = [], [], [] # 空列表, 使用 append() 添加元素 # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了 config = tf.ConfigProto(allow_soft_placement=True) # 创建sess的时候对sess进行参数配置 config.gpu_options.allow_growth = True # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。 config.allow_soft_placement = True # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行 x_batch = DNN_data.randnormal_mu_sigma(size=batchsize, mu=0.5, sigma=0.5) y_init = 0.25 - 0.5 * x_batch + np.reshape(np.random.randn(batchsize, 1), (-1, 1)) y_aux_batch = DNN_data.rand_it(batch_size=batchsize2aux, variable_dim=data_indim, region_a=-2, region_b=2) # y_aux_batch = DNN_data.randnormal_mu_sigma(size=batchsize2aux, mu=0.0, sigma=1.5) # x_aux_batch = DNN_data.randnormal_mu_sigma(size=batchsize2aux, mu=0.5, sigma=0.5) # y_aux_batch = 0.25 - 0.5 * x_aux_batch + np.reshape(np.random.randn(batchsize2aux, 1), (-1, 1)) relate2XY = np.reshape(np.random.randint(0, 2, batchsize), (-1, 1)) y_batch = np.multiply(y_init, relate2XY) one2train = np.ones((1, 1)) with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) tmp_lr = learning_rate for i_epoch in range(R['max_epoch'] + 1): tmp_lr = tmp_lr * (1 - lr_decay) _, loss2b_tmp, loss2seff_tmp, loss_tmp, p_WB, beta_temp = sess.run( [train_my_loss, loss2b, loss2Seff, loss, penalty_WB, beta], feed_dict={X: x_batch, Y: y_batch, R2XY: relate2XY, y_aux: y_aux_batch, tfOne: one2train, inline_lr: tmp_lr}) loss_b_all.append(loss2b_tmp) loss_seff_all.append(loss2seff_tmp) loss_all.append(loss_tmp) if (i_epoch % 10) == 0: DNN_tools.log_string('*************** epoch: %d*10 ****************' % int(i_epoch / 10), log_fileout) DNN_tools.log_string('lossb for training: %.10f\n' % loss2b_tmp, log_fileout) DNN_tools.log_string('lossS for training: %.10f\n' % loss2seff_tmp, log_fileout) DNN_tools.log_string('loss for training: %.10f\n' % loss_tmp, log_fileout) if (i_epoch % 100) == 0: print('**************** epoch: %d*100 *******************'% int(i_epoch/100)) print('beta:[%f %f]' % (beta_temp[0, 0], beta_temp[0, 1])) print('\n') DNN_tools.log_string('*************** epoch: %d*100 *****************' % int(i_epoch/100), para_outFile) DNN_tools.log_string('beta:[%f, %f]' % (beta_temp[0, 0], beta_temp[0, 1]), para_outFile) DNN_tools.log_string('\n', para_outFile) saveData.save_trainLoss2mat_1actFunc(loss_b_all, loss_seff_all, loss_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_b_all, lossType='loss_b', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_seff_all, lossType='loss_s', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_all, lossType='loss_all', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True)
def solve_Multiscale_PDE(R): log_out_path = R['FolderName'] # 将路径从字典 R 中提取出来 if not os.path.exists(log_out_path): # 判断路径是否已经存在 os.mkdir(log_out_path) # 无 log_out_path 路径,创建一个 log_out_path 路径 logfile_name = '%s_%s.txt' % ('logTrain', R['name2act_hidden']) log_fileout = open(os.path.join(log_out_path, logfile_name), 'w') # 在这个路径下创建并打开一个可写的 log_train.txt文件 DNN_Log_Print.dictionary_out2file(R, log_fileout) # 一般 laplace 问题需要的设置 batchsize_it = R['batch_size2interior'] batchsize_bd = R['batch_size2boundary'] bd_penalty_init = R['init_boundary_penalty'] # Regularization parameter for boundary conditions penalty2WB = R['penalty2weight_biases'] # Regularization parameter for weights and biases lr_decay = R['learning_rate_decay'] learning_rate = R['learning_rate'] hidden_layers = R['hidden_layers'] act_func = R['name2act_hidden'] # ------- set the problem --------- input_dim = R['input_dim'] out_dim = R['output_dim'] region_l = 0.0 region_r = 1.0 if R['PDE_type'] == 'general_Laplace': # -laplace u = f region_l = 0.0 region_r = 1.0 f, u_true, u_left, u_right = General_Laplace.get_infos2Laplace_1D( input_dim=input_dim, out_dim=out_dim, intervalL=region_l, intervalR=region_r, equa_name=R['equa_name']) elif R['PDE_type'] == 'pLaplace': # 求解如下方程, A_eps(x) 震荡的比较厉害,具有多个尺度 # d **** d **** # - ---- | A_eps(x)* ---- u_eps(x) | =f(x), x \in R^n # dx **** dx **** # 问题区域,每个方向设置为一样的长度。等网格划分,对于二维是方形区域 p_index = R['order2pLaplace_operator'] epsilon = R['epsilon'] region_l = 0.0 region_r = 1.0 if R['equa_name'] == 'multi_scale': u_true, f, A_eps, u_left, u_right = MS_LaplaceEqs.get_infos2pLaplace_1D( in_dim=input_dim, out_dim=out_dim, intervalL=region_l, intervalR=region_r, index2p=p_index, eps=epsilon) elif R['equa_name'] == '3scale2': epsilon2 = 0.01 u_true, A_eps, u_left, u_right = MS_LaplaceEqs.get_infos2pLaplace_1D_3scale2( in_dim=input_dim, out_dim=out_dim, intervalL=region_l, intervalR=region_r, index2p=p_index, eps1=epsilon, eps2=epsilon2) elif R['equa_name'] == 'rand_ceof': num2sun_term = 2 Alpha = 1.2 Xi1 = [-0.25, 0.25] Xi2 = [-0.3, 0.3] # Xi1 = np.random.uniform(-0.5, 0.5, num2sun_term) print('Xi1:', Xi1) print('\n') # Xi2 = np.random.uniform(-0.5, 0.5, num2sun_term) print('Xi2:', Xi2) print('\n') u_left, u_right = random2pLaplace.random_boundary() elif R['equa_name'] == 'rand_sin_ceof': Xi1=-0.25 Xi2=0.25 u_true, f, A_eps = random2pLaplace.random_equa2() elif R['PDE_type'] == 'Possion_Boltzmann': # 求解如下方程, A_eps(x) 震荡的比较厉害,具有多个尺度 # d **** d **** # - ---- | A_eps(x)* ---- u_eps(x) | + K(x)u_eps(x) =f(x), x \in R^n # dx **** dx **** p_index = R['order2pLaplace_operator'] epsilon = R['epsilon'] region_l = 0.0 region_r = 1.0 A_eps, kappa, u_true, u_left, u_right, f = MS_BoltzmannEqs.get_infos2Boltzmann_1D( in_dim=input_dim, out_dim=out_dim, region_a=region_l, region_b=region_r, index2p=p_index, eps=epsilon, eqs_name=R['equa_name']) # 初始化权重和和偏置 flag1 = 'WB' if R['model2NN'] == 'DNN_FourierBase': Weights, Biases = DNN_base.Xavier_init_NN_Fourier(input_dim, out_dim, hidden_layers, flag1) else: Weights, Biases = DNN_base.Xavier_init_NN(input_dim, out_dim, hidden_layers, flag1) global_steps = tf.compat.v1.Variable(0, trainable=False) with tf.device('/gpu:%s' % (R['gpuNo'])): with tf.compat.v1.variable_scope('vscope', reuse=tf.compat.v1.AUTO_REUSE): X_it = tf.compat.v1.placeholder(tf.float32, name='X_it', shape=[None, input_dim]) # * 行 1 列 X_left = tf.compat.v1.placeholder(tf.float32, name='X_left', shape=[None, input_dim]) # * 行 1 列 X_right = tf.compat.v1.placeholder(tf.float32, name='X_right', shape=[None, input_dim]) # * 行 1 列 bd_penalty = tf.compat.v1.placeholder_with_default(input=1e3, shape=[], name='bd_p') in_learning_rate = tf.compat.v1.placeholder_with_default(input=1e-5, shape=[], name='lr') # 供选择的网络模式 if R['model2NN'] == 'DNN': UNN = DNN_base.DNN(X_it, Weights, Biases, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden'], activateOut_name=R['activateOut_func']) UNN_left = DNN_base.DNN(X_left, Weights, Biases, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden'], activateOut_name=R['name2act_out']) UNN_right = DNN_base.DNN(X_right, Weights, Biases, hidden_layers, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden'], activateOut_name=R['name2act_out']) elif R['model2NN'] == 'DNN_scale': freqs = R['freq'] UNN = DNN_base.DNN_scale(X_it, Weights, Biases, hidden_layers, freqs, activateIn_name=R['name2act_in'], activate_name=act_func, activateOut_name=R['name2act_out']) UNN_left = DNN_base.DNN_scale(X_left, Weights, Biases, hidden_layers, freqs, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden'], activateOut_name=R['name2act_out']) UNN_right = DNN_base.DNN_scale(X_right, Weights, Biases, hidden_layers, freqs, activateIn_name=R['name2act_in'], activate_name=R['name2act_hidden'], activateOut_name=R['name2act_out']) elif R['model2NN'] == 'DNN_FourierBase': freqs = R['freq'] UNN = DNN_base.DNN_FourierBase(X_it, Weights, Biases, hidden_layers, freqs, activate_name=act_func, activateOut_name=R['name2act_out'], sFourier=R['sfourier']) UNN_left = DNN_base.DNN_FourierBase(X_left, Weights, Biases, hidden_layers, freqs, activate_name=act_func, activateOut_name=R['name2act_out'], sFourier=R['sfourier']) UNN_right = DNN_base.DNN_FourierBase(X_right, Weights, Biases, hidden_layers, freqs, activate_name=act_func, activateOut_name=R['name2act_out'], sFourier=R['sfourier']) # 变分形式的loss of interior,训练得到的 UNN 是 * 行 1 列 if R['loss_type'] == 'variational_loss': dUNN = tf.gradients(UNN, X_it) if R['PDE_type'] == 'general_Laplace': dUNN_Norm = tf.reduce_sum(tf.square(dUNN), axis=-1) loss_it_variational = (1.0 / 2) * tf.reshape(dUNN_Norm, shape=[-1, 1]) - \ tf.multiply(tf.reshape(f(X_it), shape=[-1, 1]), UNN) elif R['PDE_type'] == 'pLaplace': if R['equa_name'] == '3scale2': a_eps = A_eps(X_it) # * 行 1 列 AdUNN_pNorm = tf.reduce_sum(a_eps * tf.pow(tf.abs(dUNN), p_index), axis=-1) fx = MS_LaplaceEqs.force_sice_3scale2(X_it, eps1=R['epsilon'], eps2=0.01) loss_it_variational = (1.0 / p_index) * tf.reshape(AdUNN_pNorm, shape=[-1, 1]) - \ tf.multiply(tf.reshape(fx, shape=[-1, 1]), UNN) elif R['equa_name'] == 'rand_ceof': a_eps = random2pLaplace.rangdom_ceof(x=X_it, xi1=Xi1, xi2=Xi2, K=num2sun_term, alpha=Alpha) # fx = random2pLaplace.rangdom_force(x=X_it, xi1=Xi1, xi2=Xi2, K=num2sun_term, alpha=Alpha) # duf = tf.gradients(force_side, X_it) fx = random2pLaplace.rangdom_diff_force2x(x=X_it, xi1=Xi1, xi2=Xi2, K=num2sun_term, alpha=Alpha) AdUNN_pNorm = tf.reduce_sum(a_eps * tf.pow(tf.abs(dUNN), p_index), axis=-1) loss_it_variational = (1.0 / p_index) * tf.reshape(AdUNN_pNorm, shape=[-1, 1]) - \ tf.multiply(tf.reshape(fx, shape=[-1, 1]), UNN) elif R['equa_name'] == 'rand_sin_ceof': a_eps = 1.0 fx = random2pLaplace.random_sin_f(x=X_it, xi1=Xi1, xi2=Xi2, K=2, alpha=1.0) AdUNN_pNorm = tf.reduce_sum(a_eps * tf.pow(tf.abs(dUNN), p_index), axis=-1) loss_it_variational = (1.0 / p_index) * tf.reshape(AdUNN_pNorm, shape=[-1, 1]) - \ tf.multiply(tf.reshape(fx, shape=[-1, 1]), UNN) else: # a_eps = A_eps(X_it) # * 行 1 列 a_eps = 1 / (2 + tf.cos(2 * np.pi * X_it / epsilon)) AdUNN_pNorm = tf.reduce_sum(a_eps * tf.pow(tf.abs(dUNN), p_index), axis=-1) loss_it_variational = (1.0 / p_index) * tf.reshape(AdUNN_pNorm, shape=[-1, 1]) - \ tf.multiply(tf.reshape(f(X_it), shape=[-1, 1]), UNN) elif R['PDE_type'] == 'Possion_Boltzmann': # a_eps = A_eps(X_it) # * 行 1 列 a_eps = 1 / (2 + tf.cos(2 * np.pi * X_it / epsilon)) Kappa = kappa(X_it) AdUNN_pNorm = tf.reduce_sum(a_eps * tf.pow(tf.abs(dUNN), p_index), axis=-1) if R['equa_name'] == 'Boltzmann2': fside = MS_BoltzmannEqs.get_force_side2Boltzmann_1D(X_it, index2p=p_index, eps=epsilon) else: fside = tf.reshape(f(X_it), shape=[-1, 1]) if p_index == 1: loss_it_variational = (1.0 / 2) * (tf.reshape(AdUNN_pNorm, shape=[-1, 1]) + Kappa*UNN*UNN) - tf.multiply(fside, UNN) elif p_index == 2: loss_it_variational = (1.0 / 2) * (tf.reshape(AdUNN_pNorm, shape=[-1, 1]) + Kappa*UNN*UNN*UNN) - tf.multiply(fside, UNN) loss_it = tf.reduce_mean(loss_it_variational) elif R['loss_type'] == 'L2_loss': dUNN = tf.gradients(UNN, X_it) if R['PDE_type'] == 'general_Laplace': ddUNN = tf.gradients(dUNN, X_it) loss_it_L2 = -1.0*ddUNN - tf.reshape(f(X_it), shape=[-1, 1]) square_loss_it = tf.square(loss_it_L2) elif R['PDE_type'] == 'pLaplace': a_eps = A_eps(X_it) # a_eps = 1 / (2 + tf.cos(2 * np.pi * X_it / epsilon)) if p_index == 2.0: AdUNNpNorm = 1.0*a_eps elif p_index == 3.0: dUNNp_2Nrom = tf.abs(dUNN) AdUNNpNorm = tf.multiply(a_eps, dUNNp_2Nrom) else: dUNNp_2Nrom = tf.pow(tf.abs(dUNN), p_index-2.0) AdUNNpNorm = tf.multiply(a_eps, dUNNp_2Nrom) AdUNNpNorm_dUNN = tf.multiply(AdUNNpNorm, dUNN) dAdUNNpNorm_dUNN = tf.gradients(AdUNNpNorm_dUNN, X_it) if R['equa_name'] == '3scale2': fx = MS_LaplaceEqs.force_sice_3scale2(X_it, eps1=R['epsilon'], eps2=0.01) loss_it_L2 = dAdUNNpNorm_dUNN + tf.reshape(fx, shape=[-1, 1]) else: loss_it_L2 = dAdUNNpNorm_dUNN + tf.reshape(f(X_it), shape=[-1, 1]) square_loss_it = tf.square(loss_it_L2) elif R['PDE_type'] == 'Possion_Boltzmann': a_eps = A_eps(X_it) # a_eps = 1 / (2 + tf.cos(2 * np.pi * X_it / epsilon)) Kappa = kappa(X_it) if p_index == 2.0: AdUNNpNorm = 1.0*a_eps elif p_index == 3.0: dUNNp_2Nrom = tf.abs(dUNN) AdUNNpNorm = tf.multiply(a_eps, dUNNp_2Nrom) else: dUNNp_2Nrom = tf.pow(tf.abs(dUNN), p_index-2.0) AdUNNpNorm = tf.multiply(a_eps, dUNNp_2Nrom) AdUNNpNorm_dUNN = tf.multiply(AdUNNpNorm, dUNN) dAdUNNpNorm_dUNN = tf.gradients(AdUNNpNorm_dUNN, X_it) loss_it_L2 = -1.0*dAdUNNpNorm_dUNN + Kappa*UNN - tf.reshape(f(X_it), shape=[-1, 1]) square_loss_it = tf.square(loss_it_L2) # loss_it = tf.reduce_mean(loss_it_L2)*(region_r-region_l) loss_it = tf.reduce_mean(square_loss_it) U_left = u_left(X_left) U_right = u_right(X_right) loss_bd_square = tf.square(UNN_left - U_left) + tf.square(UNN_right - U_right) loss_bd = tf.reduce_mean(loss_bd_square) if R['regular_wb_model'] == 'L1': regularSum2WB = DNN_base.regular_weights_biases_L1(Weights, Biases) # 正则化权重和偏置 L1正则化 elif R['regular_wb_model'] == 'L2': regularSum2WB = DNN_base.regular_weights_biases_L2(Weights, Biases) # 正则化权重和偏置 L2正则化 else: regularSum2WB = tf.constant(0.0) # 无正则化权重参数 PWB = penalty2WB * regularSum2WB loss = loss_it + bd_penalty * loss_bd + PWB # 要优化的loss function my_optimizer = tf.compat.v1.train.AdamOptimizer(in_learning_rate) if R['train_model'] == 'group3_training': train_op1 = my_optimizer.minimize(loss_it, global_step=global_steps) train_op2 = my_optimizer.minimize(loss_bd, global_step=global_steps) train_op3 = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.group(train_op1, train_op2, train_op3) elif R['train_model'] == 'group2_training': train_op2 = my_optimizer.minimize(loss_bd, global_step=global_steps) train_op3 = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.group(train_op2, train_op3) elif R['train_model'] == 'union_training': train_my_loss = my_optimizer.minimize(loss, global_step=global_steps) # 训练上的真解值和训练结果的误差 if R['equa_name'] == 'rand_ceof': U_true = random2pLaplace.rangdom_exact_solution_1(x=X_it, xi1=Xi1, xi2=Xi2, K=num2sun_term, alpha=Alpha) mean_square_error = tf.reduce_mean(tf.square(U_true - dUNN)) residual_error = mean_square_error / tf.reduce_mean(tf.square(U_true)) else: U_true = u_true(X_it) mean_square_error = tf.reduce_mean(tf.square(U_true - UNN)) residual_error = mean_square_error / tf.reduce_mean(tf.square(U_true)) t0 = time.time() loss_it_all, loss_bd_all, loss_all, train_mse_all, train_rel_all = [], [], [], [], [] # 空列表, 使用 append() 添加元素 test_mse_all, test_rel_all = [], [] testing_epoch = [] test_batch_size = 1000 test_x_bach = np.reshape(np.linspace(region_l, region_r, num=test_batch_size), [-1, 1]) # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了 config = tf.compat.v1.ConfigProto(allow_soft_placement=True) # 创建sess的时候对sess进行参数配置 config.gpu_options.allow_growth = True # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。 config.allow_soft_placement = True # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行 with tf.compat.v1.Session(config=config) as sess: sess.run(tf.compat.v1.global_variables_initializer()) tmp_lr = learning_rate for i_epoch in range(R['max_epoch'] + 1): x_it_batch = DNN_data.rand_it(batchsize_it, input_dim, region_a=region_l, region_b=region_r) xl_bd_batch, xr_bd_batch = DNN_data.rand_bd_1D(batchsize_bd, input_dim, region_a=region_l, region_b=region_r) tmp_lr = tmp_lr * (1 - lr_decay) if R['activate_penalty2bd_increase'] == 1: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_bd = bd_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_bd = 10 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_bd = 50 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_bd = 100 * bd_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_bd = 200 * bd_penalty_init else: temp_penalty_bd = 500 * bd_penalty_init else: temp_penalty_bd = bd_penalty_init _, loss_it_tmp, loss_bd_tmp, loss_tmp, train_mse_tmp, train_res_tmp, pwb = sess.run( [train_my_loss, loss_it, loss_bd, loss, mean_square_error, residual_error, PWB], feed_dict={X_it: x_it_batch, X_left: xl_bd_batch, X_right: xr_bd_batch, in_learning_rate: tmp_lr, bd_penalty: temp_penalty_bd}) loss_it_all.append(loss_it_tmp) loss_bd_all.append(loss_bd_tmp) loss_all.append(loss_tmp) train_mse_all.append(train_mse_tmp) train_rel_all.append(train_res_tmp) if i_epoch % 1000 == 0: run_times = time.time() - t0 DNN_Log_Print.print_and_log_train_one_epoch( i_epoch, run_times, tmp_lr, temp_penalty_bd, pwb, loss_it_tmp, loss_bd_tmp, loss_tmp, train_mse_tmp, train_res_tmp, log_out=log_fileout) # --------------------------- test network ---------------------------------------------- testing_epoch.append(i_epoch / 1000) if R['equa_name'] == 'rand_ceof': u_true2test, unn2test = sess.run([U_true, dUNN], feed_dict={X_it: test_x_bach}) else: u_true2test, unn2test = sess.run([U_true, UNN], feed_dict={X_it: test_x_bach}) mse2test = np.mean(np.square(u_true2test - unn2test)) test_mse_all.append(mse2test) res2test = mse2test / np.mean(np.square(u_true2test)) test_rel_all.append(res2test) DNN_Log_Print.print_and_log_test_one_epoch(mse2test, res2test, log_out=log_fileout) # ----------------------- save training results to mat files, then plot them --------------------------------- saveData.save_trainLoss2mat_1actFunc(loss_it_all, loss_bd_all, loss_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_it_all, lossType='loss_it', seedNo=R['seed'], outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_bd_all, lossType='loss_bd', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_all, lossType='loss', seedNo=R['seed'], outPath=R['FolderName']) saveData.save_train_MSE_REL2mat(train_mse_all, train_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_MSE_REL_1act_func(train_mse_all, train_rel_all, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) # ---------------------- save testing results to mat files, then plot them -------------------------------- saveData.save_2testSolus2mat(u_true2test, unn2test, actName='utrue', actName1=act_func, outPath=R['FolderName']) plotData.plot_2solutions2test(u_true2test, unn2test, coord_points2test=test_x_bach, batch_size2test=test_batch_size, seedNo=R['seed'], outPath=R['FolderName'], subfig_type=R['subfig_type']) saveData.save_testMSE_REL2mat(test_mse_all, test_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTest_MSE_REL(test_mse_all, test_rel_all, testing_epoch, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True)