예제 #1
0
                print('min_epoch_count: {}'.format(min_epoch_count))

            if len(accuracies[tasks]) > max_epoch_count:
                max_epoch_count = len(accuracies[tasks])
                print('max_epoch_count: {}'.format(max_epoch_count))
        except:
            print('{} not found'.format(tasks))

    return accuracies, min_epoch_count, max_epoch_count


if __name__ == '__main__':
    accuracies, min_epoch_count, max_epoch_count = read_pkls()
    pprint(accuracies)
    plot_accuracies(
        epoch_limit,
        min_epoch_count,
        max_epoch_count,
        accuracies.items(),
        task_ids,
        'Ablation study',
        'components_removed_training_accuracy.png',
        y_offsets={
            'main': 0.0015,
            'no_story_again': -0.0015,
            'no_same_rnn': -0.001
        },
        ylim=(0.85, 1),
        moving_avg=4,
    )
예제 #2
0
min_epoch_count = 100000
epoch_limit = 200

hpconfigs = [
    'hpconfig_story_len_10',
    'hpconfig_story_len_20',
    'hpconfig_story_len_30',
    'hpconfig_story_len_40',
    'hpconfig_story_len_50',
    'hpconfig_story_len_60',
    'hpconfig',  # all
]

if __name__ == '__main__':
    accuracies, min_epoch_count, max_epoch_count = read_pkls(
        hpconfigs, 'hpconfig_story_len_(\d+)')
    pprint(accuracies)
    labels = {k: 'story_len = {}'.format(k) for k in accuracies.keys()}
    labels['main'] = 'main'
    plot_accuracies(
        epoch_limit,
        min_epoch_count,
        max_epoch_count,
        accuracies.items(),
        task_ids,
        'Story length',
        'story_len_training_accuracy.png',
        labels=labels,
        y_offsets={},
    )
예제 #3
0
min_epoch_count = 100000
epoch_limit = 200

hpconfigs = [
    'hpconfig_1_reasoning_steps',
    'hpconfig_3_reasoning_steps',
    'hpconfig_4_reasoning_steps',
    'hpconfig_5_reasoning_steps',
    'hpconfig',
]

if __name__ == '__main__':
    accuracies, min_epoch_count, max_epoch_count = read_pkls(
        hpconfigs, 'hpconfig_(\d+)_reasoning_steps')
    pprint(accuracies)
    labels = {
        k: 'steps = {}'.format(k)
        for k in accuracies.keys() if k != 'main'
    }
    labels['main'] = 'steps = 2'
    plot_accuracies(epoch_limit,
                    min_epoch_count,
                    max_epoch_count,
                    accuracies.items(),
                    task_ids,
                    'Reasoning Steps',
                    'reasoning_steps_training_accuracy.png',
                    labels=labels,
                    y_offsets={},
                    ylim=(0.6, 1))
    'hpconfig_50percent_dataset', 'hpconfig_75percent_dataset', 'hpconfig'
]

if __name__ == '__main__':
    accuracies, min_epoch_count, max_epoch_count = read_pkls(
        hpconfigs, 'hpconfig_(\d+)percent_dataset')
    pprint(accuracies)
    labels = {
        k: 'size = {:0.2f}'.format(float(k) / 100)
        for k in accuracies.keys() if k != 'main'
    }
    labels['main'] = 'main'
    plot_accuracies(epoch_limit,
                    min_epoch_count,
                    max_epoch_count,
                    accuracies.items(),
                    task_ids,
                    'Dataset Size',
                    'dataset_training_accuracy.png',
                    labels=labels,
                    y_offsets={
                        '10': 0.0,
                        '20': 0.0,
                        '30': -0.005,
                        '40': 0.005,
                        '50': 0.005,
                        '75': -0.007,
                        'main': 0.007
                    },
                    ylim=(0.6, 1))
import sys
sys.path.append('..')
import matplotlib.pyplot as plt
import importlib
from anikattu.utilz import initialize_task
plt.style.use('ggplot')
import pickle

from plot_combined_accuracy import task_names, task_ids, plot_accuracies
from heatmap_task_accuracies import read_pkls

root_dirs = {}
accuracies = {}
max_epoch_count = 0
min_epoch_count = 100000
epoch_limit = 200


if __name__ == '__main__':
    accuracies, min_epoch_count, max_epoch_count = read_pkls()    
    plot_accuracies(epoch_limit,
                    min_epoch_count, max_epoch_count,
                    accuracies.items(), task_ids,
                    'Individual Training Accuracy',
                    'individual_training_accuracy.png')