def main(): m = 350 random.seed(2) X = np.empty([m, 2]) X[:, 0] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) X[:, 1] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) #not separable y = np.empty([m, 1]) for i in range(X.shape[0]): y[i] = func2(X[i, :]) #plot data and decision surface ax = pu.plot_data(X, y) pu.plot_surface(X, y, X[:, 0], X[:, 1], disc_func=func, ax=ax) plt.show() #train svm #change c to hard/soft margins w, w0, support_vectors_idx = svm.train(X, y, c=99999, eps=0.1) #plot result predicted_labels = svm.classify_all(X, w, w0) print("Accuracy: {}".format(svm.getAccuracy(y, predicted_labels))) ax = pu.plot_data(X, y, support_vectors_idx) pu.plot_surfaceSVM(X[:, 0], X[:, 1], w, w0, ax=ax) plt.show()
def main(): m=100 X = np.empty([m,2]) X[:,0] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) X[:,1] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) # preprocessing.scale(X) #linearly separable y = np.empty([m,1]) for i in range(m): y[i] = func(X[i,]) #plot data and decision surface ax = pu.plot_data(X,y) pu.plot_surface(X,y, X[:, 0], X[:,1], disc_func=func, ax=ax) plt.show() #train svm w,w0, support_vectors_idx = svm.train(X,y,c=999999999999999, eps=10, type='gaussian') # w, w0, support_vectors_idx = svm.train(X, y, c=999999999999999, eps=10, type='polynomial') #plot result predicted_labels = svm.classify_all(X,w,w0) print("Accuracy: {}".format(svm.getAccuracy(y,predicted_labels))) ax = pu.plot_data(X,y, support_vectors_idx) pu.plot_surfaceSVM(X[:,0], X[:,1], w,w0, ax=ax) plt.show()
def main(): m=350 random.seed(2) X = np.empty([m,2]) X[:,0] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) X[:,1] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) #not separable y = np.empty([m,1]) for i in range(X.shape[0]): y[i] = func2(X[i,:]) #plot data and decision surface ax = pu.plot_data(X,y) pu.plot_surface(X,y, X[:, 0], X[:,1], disc_func=func, ax=ax) plt.show() #train svm #change c to hard/soft margins w,w0, support_vectors_idx = svm.train(X,y,c=99999,eps=0.1) #plot result predicted_labels = svm.classify_all(X,w,w0) print("Accuracy: {}".format(svm.getAccuracy(y,predicted_labels))) ax = pu.plot_data(X,y, support_vectors_idx) pu.plot_surfaceSVM(X[:,0], X[:,1], w,w0, ax=ax) plt.show()
def main(): m=150 random.seed(2) X = np.empty([m,2]) X[:,0] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) X[:,1] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) preprocessing.scale(X) #linearly separable y = np.empty([m,1]) for i in range(m): y[i] = func(X[i,]) # shuffle p = np.random.permutation(len(X)) X = X[p] y = y[p] #plot data and decision surface ax = pu.plot_data(X,y) pu.plot_surface(X,y, X[:, 0], X[:,1], disc_func=func, ax=ax) plt.show() #train svm w,w0, support_vectors_idx = svm.train(X,y,c=9999, eps=0.000001) #plot result predicted_labels = svm.classify_all(X,w,w0) print("Accuracy: {}".format(svm.getAccuracy(y,predicted_labels))) kfold = svm.kfoldCrossValidation(X,y,10,1,c=999999999,eps=0.000001) print (kfold) ax = pu.plot_data(X,y, support_vectors_idx) pu.plot_surfaceSVM(X[:,0], X[:,1], w,w0, ax=ax) plt.show()
def main(): m = 150 random.seed(2) X = np.empty([m, 2]) X[:, 0] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) X[:, 1] = np.matrix((random.sample(range(-10000, 10000), m))) / float(1000) preprocessing.scale(X) #linearly separable y = np.empty([m, 1]) for i in range(m): y[i] = func(X[i, ]) # shuffle p = np.random.permutation(len(X)) X = X[p] y = y[p] #plot data and decision surface ax = pu.plot_data(X, y) pu.plot_surface(X, y, X[:, 0], X[:, 1], disc_func=func, ax=ax) plt.show() #train svm w, w0, support_vectors_idx = svm.train(X, y, c=9999, eps=0.000001) #plot result predicted_labels = svm.classify_all(X, w, w0) print("Accuracy: {}".format(svm.getAccuracy(y, predicted_labels))) kfold = svm.kfoldCrossValidation(X, y, 10, 1, c=999999999, eps=0.000001) print(kfold) ax = pu.plot_data(X, y, support_vectors_idx) pu.plot_surfaceSVM(X[:, 0], X[:, 1], w, w0, ax=ax) plt.show()