T_start = 2.0 T_stop = 2.4 T_step = 0.01 # 0.02 MCcycles = 1000000 initial_state = "Random" for L in [20, 40, 60, 80, 100]: if doItAgain: doit() for L in [20, 40, 60, 80, 100]: filename = Filename(L, T_start, T_stop, T_step, MCcycles, initial_state) data = lesfil(filename) plt.figure(0) plt.subplot(211) plotfil(filename, 0, 1, label="$L=%i$" % L) plt.subplot(212) plotfil(filename, 0, 2, label="$L=%i$" % L) plt.figure(2) plt.subplot(211) plotfil(filename, 0, 3, label="$L=%i$" % L) plt.subplot(212) plotfil(filename, 0, 4, label="$L=%i$" % L) plt.figure(0) plt.subplot(211) plt.plot((2.269, 2.269), (-1.8, -1.1), "k") # plt.xlabel(mathrm('Temperature')+'$T$')
doit() ## Temperature T=2.4 T = 2.4 doit() ### Now plot things: ## Uniform start filename1 = Filename(1, MCcycles, 'Uniform') filename2 = Filename(2.4, MCcycles, 'Uniform') # <E> plt.subplot(211) plt.title(mathrm('Uniform')) plotfil(filename1, 0, 1, label='$T=1$') # T=1 plotfil(filename2, 0, 1, label='$T=2.4$') # T=2.4 plt.ylim([-2.1, -1.1]) plt.legend(loc='best') plt.ylabel('$\langle E \\rangle$ ') # <|M|> plt.subplot(212) plotfil(filename1, 0, 2, label='$T=1$') # T=1 plotfil(filename2, 0, 2, label='$T=2.4$') # T=2.4 plt.ylim([0.4, 1.1]) plt.legend(loc='best') plt.xlabel(mathrm('Number of monte carlo cycles')) plt.ylabel('$\langle |M| \\rangle$') plt.savefig('task_c_averages_uniform.pdf')