def main(argv): sfarg = {'func':['-do'], 'files':['simdata/svcsimn_d4a1_1.json'], '-m':['red'], '-t':['Out-degree distribution of scale-free and ProgrammableWeb service networks'], '-xl':['Out-degree $k_{out}$'], '-yl':['Probability distribution $P(k_{out})$\nScale-free'], '-l':['Scale-free'], '-loc':[2], '-axisfsize':['large'], '-logy':[1], '-ylim':[0.1, 1.3]} pwarg = {'func':['-do'], 'files':['simdata/pwsvc_1.json'], '-m':['diamond'], '-yl':['ProgrammableWeb'], '-l':['ProgrammableWeb'], '-axisfsize':['large'], '-loc':[1], '-logy':[1], '-ylim':[1e-05, 4]} ax = p.plt.axes([0.13, 0.12, 0.6, 0.78]) logx, logy = pl.getlogparam(sfarg) p.plotdegdist(pl.loadarg([sfarg]) , pl.getargval(sfarg, '-l') , pl.getargval(sfarg, '-m', ['var'])[0] , title=pl.getargval(sfarg, '-t', [''])[0] , xylabels={'x': pl.getargval(sfarg, '-xl', [''])[0], 'y': pl.getargval(sfarg, '-yl', [''])[0]} , nbins=int(pl.getargval(sfarg, '-b', ['50'])[0]) , logx=logx, logy=logy , xlim=pl.getargval(sfarg, '-xlim') , ylim=pl.getargval(sfarg, '-ylim') , legloc=int(pl.getargval(sfarg, '-loc', [2])[0]) , axisfsize=pl.getaxisfsize(sfarg) , ax=ax) ax.set_ylabel(ax.get_ylabel(), color='red') for tl in ax.get_yticklabels(): tl.set_color('red') ax2 = p.plt.twinx(ax) logx, logy = pl.getlogparam(pwarg) p.plotdegdist(pl.loadarg([pwarg]) , pl.getargval(pwarg, '-l') , pl.getargval(pwarg, '-m', ['var'])[0] , title=pl.getargval(pwarg, '-t', [''])[0] , xylabels={'x': pl.getargval(pwarg, '-xl', [''])[0], 'y': pl.getargval(pwarg, '-yl', [''])[0]} , nbins=int(pl.getargval(pwarg, '-b', ['50'])[0]) , logx=logx, logy=logy , xlim=pl.getargval(pwarg, '-xlim') , ylim=pl.getargval(pwarg, '-ylim') , legloc=int(pl.getargval(pwarg, '-loc', [2])[0]) , axisfsize=pl.getaxisfsize(pwarg) , ax=ax2) ax2.set_ylabel(ax2.get_ylabel(), color='#003200') for tl in ax2.get_yticklabels(): tl.set_color('#003200') p.processplot(p.plt)
def main(argv): argsf = {'func':['-li'], 'files':['simdata/svcsimn_d2a1_6.json', 'simdata/svcsimn_d3a1_2.json', 'simdata/svcsimn_d4a1_2.json'], '-m':['red'], '-yl':['$P(k_{in})$'], '-axisfsize':['large'], '-lb':[1.21], '-gl':[0], '-loc':[1], '-l':['sf, $\langle{dep}\\rangle = 1$', 'sf, $\langle{dep}\\rangle \\approx 1.5$', 'sf, $\langle{dep}\\rangle \\approx 2$']} argexp = {'func':['-di'], 'files':['simdata/expsvcsimn_d2a1_5.json', 'simdata/expsvcsimn_d3a1_2.json', 'simdata/expsvcsimn_d4a1_3.json'], '-m':['blue'], '-xl':['In-degree $k_{in}$'], '-axisfsize':['large'], '-logy':[1], '-l':['exp, $\langle{dep}\\rangle = 1$', 'exp, $\langle{dep}\\rangle \\approx 1.5$', 'exp, $\langle{dep}\\rangle \\approx 2$']} argrand = {'func':['-di'], 'files':['simdata/randsvcsimn_d2a1_5.json', 'simdata/randsvcsimn_d3a1_2.json', 'simdata/randsvcsimn_d4a1_3.json'], '-m':['yellow'], '-axisfsize':['large'], '-l':['rand, $\langle{dep}\\rangle = 1$', 'rand, $\langle{dep}\\rangle \\approx 1.5$', 'rand, $\langle{dep}\\rangle \\approx 2$']} p.plt.subplot(131) p.drawloglogdist(pl.loadarg([argsf]) , xlabel=pl.getargval(argsf, '-xl', [''])[0] , ylabel=pl.getargval(argsf, '-yl', [''])[0] , title=pl.getargval(argsf, '-t', [''])[0] , markset=pl.getargval(argsf, '-m', ['var'])[0] , xlim=pl.getargval(argsf, '-xlim') , ylim=pl.getargval(argsf, '-ylim') , axisfsize=pl.getaxisfsize(argsf) , logbinbase=pl.getargval(argsf, '-lb', [1.21])[0] , showexp=int(pl.getargval(argsf, '-g', [1])[0]) , legloc=int(pl.getargval(argsf, '-loc', [1])[0]) , isexpline=int(pl.getargval(argsf, '-gl', [1])[0])) legend = p.plt.legend(argsf['-l'], labelspacing=0.1, numpoints=1) p.plt.setp(legend.get_texts(), fontsize=12) p.plt.subplot(132) logx, logy = pl.getlogparam(argexp) p.plotdegdist(pl.loadarg([argexp]) , markset=pl.getargval(argexp, '-m', ['var'])[0] , title=pl.getargval(argexp, '-t', [''])[0] , xylabels={'x': pl.getargval(argexp, '-xl', [''])[0], 'y': pl.getargval(argexp, '-yl', [''])[0]} , nbins=int(pl.getargval(argexp, '-b', ['50'])[0]) , logx=logx, logy=logy , xlim=pl.getargval(argexp, '-xlim') , ylim=pl.getargval(argexp, '-ylim') , legloc=int(pl.getargval(argexp, '-loc', [2])[0]) , axisfsize=pl.getaxisfsize(argexp)) legend = p.plt.legend(argexp['-l'], labelspacing=0.1, numpoints=1) p.plt.setp(legend.get_texts(), fontsize=12) p.plt.subplot(133) logx, logy = pl.getlogparam(argrand) p.plotdegdist(pl.loadarg([argrand]) , markset=pl.getargval(argrand, '-m', ['var'])[0] , title=pl.getargval(argrand, '-t', [''])[0] , xylabels={'x': pl.getargval(argrand, '-xl', [''])[0], 'y': pl.getargval(argrand, '-yl', [''])[0]} , nbins=int(pl.getargval(argrand, '-b', ['50'])[0]) , logx=logx, logy=logy , xlim=pl.getargval(argrand, '-xlim') , ylim=pl.getargval(argrand, '-ylim') , legloc=int(pl.getargval(argrand, '-loc', [2])[0]) , axisfsize=pl.getaxisfsize(argrand)) lines = p.plt.gca().get_lines() for line in lines: p.plt.setp(line, markerfacecolor='orange') legend = p.plt.legend(argrand['-l'], labelspacing=0.1, numpoints=1) p.plt.setp(legend.get_texts(), fontsize=12) p.plt.gcf().suptitle('In-degree distribution of scale-free, exponential, and random service networks', fontsize=14) p.processplot(p.plt)
def main(argv): argid = {'func':['-id'], 'files':['simdata/svcsimn_d4a1_4.json'], '-m':['plus'], '-yl':['In-degree'], '-axisfsize':['large'], '-j':[1]} argavgid = {'func':['-ad'], 'files':['simdata/svcsimn_d4a1_4.json'], '-m':['plus'], '-xl':['Timestep'], '-yl':['Average in-degree'], '-axisfsize':['large'], '-j':[150]} #ax = p.plt.axes([0.13, 0.15, 0.6, 0.75]) p.plt.subplot(211) p.plotdata(pl.loadarg([argid]) , xylabels={'x': pl.getargval(argid, '-xl', [''])[0], 'y': pl.getargval(argid, '-yl', [''])[0]} , markset=pl.getargval(argid, '-m', ['var'])[0] , isbase=False , xlim=pl.getargval(argid, '-xlim') , ylim=pl.getargval(argid, '-ylim') , legloc=int(pl.getargval(argid, '-loc', ['1'])[0]) , ncol=int(pl.getargval(argid, '-ncol', ['1'])[0]) , numpoints=int(pl.getargval(argid, '-numpoints', ['1'])[0]) , axisfsize=pl.getaxisfsize(argid)) p.plt.subplot(212) p.plotdata(pl.loadarg([argavgid]) , xylabels={'x': pl.getargval(argavgid, '-xl', [''])[0], 'y': pl.getargval(argavgid, '-yl', [''])[0]} , markset=pl.getargval(argavgid, '-m', ['var'])[0] , isbase=False , xlim=pl.getargval(argavgid, '-xlim') , ylim=pl.getargval(argavgid, '-ylim') , legloc=int(pl.getargval(argavgid, '-loc', ['1'])[0]) , ncol=int(pl.getargval(argavgid, '-ncol', ['1'])[0]) , numpoints=int(pl.getargval(argavgid, '-numpoints', ['1'])[0]) , axisfsize=pl.getaxisfsize(argavgid)) p.plt.gcf().suptitle('In-degree of each random failed service (top) and the average in-degree\n of the available services (bottom) during cascading failure simulation', fontsize=14) p.processplot(p.plt)