예제 #1
0
    def __init__(self, x, y, u, v,
                 scale, arrow_scale, angle, scaleratio=1, **kwargs):
        try:
            x = utils.flatten(x)
        except exceptions.PlotlyError:
            pass

        try:
            y = utils.flatten(y)
        except exceptions.PlotlyError:
            pass

        try:
            u = utils.flatten(u)
        except exceptions.PlotlyError:
            pass

        try:
            v = utils.flatten(v)
        except exceptions.PlotlyError:
            pass

        self.x = x
        self.y = y
        self.u = u
        self.v = v
        self.scale = scale
        self.scaleratio = scaleratio
        self.arrow_scale = arrow_scale
        self.angle = angle
        self.end_x = []
        self.end_y = []
        self.scale_uv()
        barb_x, barb_y = self.get_barbs()
        arrow_x, arrow_y = self.get_quiver_arrows()
예제 #2
0
    def __init__(self, x, y, u, v, scale, arrow_scale, angle, scaleratio=1, **kwargs):
        try:
            x = utils.flatten(x)
        except exceptions.PlotlyError:
            pass

        try:
            y = utils.flatten(y)
        except exceptions.PlotlyError:
            pass

        try:
            u = utils.flatten(u)
        except exceptions.PlotlyError:
            pass

        try:
            v = utils.flatten(v)
        except exceptions.PlotlyError:
            pass

        self.x = x
        self.y = y
        self.u = u
        self.v = v
        self.scale = scale
        self.scaleratio = scaleratio
        self.arrow_scale = arrow_scale
        self.angle = angle
        self.end_x = []
        self.end_y = []
        self.scale_uv()
        barb_x, barb_y = self.get_barbs()
        arrow_x, arrow_y = self.get_quiver_arrows()
예제 #3
0
    def get_decrease(self):
        """
        Flatten decrease data and get decrease text

        :rtype (list, list, list): flat_decrease_x: x-values for the decreasing
            trace, flat_decrease_y: y=values for the decreasing trace and
            text_decrease: hovertext for the decreasing trace
        """
        flat_decrease_x = utils.flatten(self.decrease_x)
        flat_decrease_y = utils.flatten(self.decrease_y)
        text_decrease = ("Open", "Open", "High", "Low", "Close", "Close",
                         "") * (len(self.decrease_x))

        return flat_decrease_x, flat_decrease_y, text_decrease
예제 #4
0
    def get_decrease(self):
        """
        Flatten decrease data and get decrease text

        :rtype (list, list, list): flat_decrease_x: x-values for the decreasing
            trace, flat_decrease_y: y=values for the decreasing trace and
            text_decrease: hovertext for the decreasing trace
        """
        flat_decrease_x = utils.flatten(self.decrease_x)
        flat_decrease_y = utils.flatten(self.decrease_y)
        text_decrease = (("Open", "Open", "High",
                          "Low", "Close", "Close", '')
                         * (len(self.decrease_x)))

        return flat_decrease_x, flat_decrease_y, text_decrease
예제 #5
0
    def get_barbs(self):
        """
        Creates x and y startpoint and endpoint pairs

        After finding the endpoint of each barb this zips startpoint and
        endpoint pairs to create 2 lists: x_values for barbs and y values
        for barbs

        :rtype: (list, list) barb_x, barb_y: list of startpoint and endpoint
            x_value pairs separated by a None to create the barb of the arrow,
            and list of startpoint and endpoint y_value pairs separated by a
            None to create the barb of the arrow.
        """
        self.end_x = [i + j for i, j in zip(self.x, self.u)]
        self.end_y = [i + j for i, j in zip(self.y, self.v)]
        empty = [None] * len(self.x)
        barb_x = utils.flatten(zip(self.x, self.end_x, empty))
        barb_y = utils.flatten(zip(self.y, self.end_y, empty))
        return barb_x, barb_y
예제 #6
0
    def get_barbs(self):
        """
        Creates x and y startpoint and endpoint pairs

        After finding the endpoint of each barb this zips startpoint and
        endpoint pairs to create 2 lists: x_values for barbs and y values
        for barbs

        :rtype: (list, list) barb_x, barb_y: list of startpoint and endpoint
            x_value pairs separated by a None to create the barb of the arrow,
            and list of startpoint and endpoint y_value pairs separated by a
            None to create the barb of the arrow.
        """
        self.end_x = [i + j for i, j in zip(self.x, self.u)]
        self.end_y = [i + j for i, j in zip(self.y, self.v)]
        empty = [None] * len(self.x)
        barb_x = utils.flatten(zip(self.x, self.end_x, empty))
        barb_y = utils.flatten(zip(self.y, self.end_y, empty))
        return barb_x, barb_y
예제 #7
0
    def get_candle_decrease(self):
        """
        Separate increasing data from decreasing data.

        The data is increasing when close value > open value
        and decreasing when the close value <= open value.
        """
        decrease_y = []
        decrease_x = []
        for index in range(len(self.open)):
            if self.close[index] <= self.open[index]:
                decrease_y.append(self.low[index])
                decrease_y.append(self.open[index])
                decrease_y.append(self.close[index])
                decrease_y.append(self.close[index])
                decrease_y.append(self.close[index])
                decrease_y.append(self.high[index])
                decrease_x.append(self.x[index])

        decrease_x = [[x, x, x, x, x, x] for x in decrease_x]
        decrease_x = utils.flatten(decrease_x)

        return decrease_x, decrease_y
예제 #8
0
    def get_candle_decrease(self):
        """
        Separate increasing data from decreasing data.

        The data is increasing when close value > open value
        and decreasing when the close value <= open value.
        """
        decrease_y = []
        decrease_x = []
        for index in range(len(self.open)):
            if self.close[index] <= self.open[index]:
                decrease_y.append(self.low[index])
                decrease_y.append(self.open[index])
                decrease_y.append(self.close[index])
                decrease_y.append(self.close[index])
                decrease_y.append(self.close[index])
                decrease_y.append(self.high[index])
                decrease_x.append(self.x[index])

        decrease_x = [[x, x, x, x, x, x] for x in decrease_x]
        decrease_x = utils.flatten(decrease_x)

        return decrease_x, decrease_y
예제 #9
0
    def get_quiver_arrows(self):
        """
        Creates lists of x and y values to plot the arrows

        Gets length of each barb then calculates the length of each side of
        the arrow. Gets angle of barb and applies angle to each side of the
        arrowhead. Next uses arrow_scale to scale the length of arrowhead and
        creates x and y values for arrowhead point1 and point2. Finally x and y
        values for point1, endpoint and point2s for each arrowhead are
        separated by a None and zipped to create lists of x and y values for
        the arrows.

        :rtype: (list, list) arrow_x, arrow_y: list of point1, endpoint, point2
            x_values separated by a None to create the arrowhead and list of
            point1, endpoint, point2 y_values separated by a None to create
            the barb of the arrow.
        """
        dif_x = [i - j for i, j in zip(self.end_x, self.x)]
        dif_y = [i - j for i, j in zip(self.end_y, self.y)]

        # Get barb lengths(default arrow length = 30% barb length)
        barb_len = [None] * len(self.x)
        for index in range(len(barb_len)):
            barb_len[index] = math.hypot(dif_x[index] / self.scaleratio,
                                         dif_y[index])

        # Make arrow lengths
        arrow_len = [None] * len(self.x)
        arrow_len = [i * self.arrow_scale for i in barb_len]

        # Get barb angles
        barb_ang = [None] * len(self.x)
        for index in range(len(barb_ang)):
            barb_ang[index] = math.atan2(dif_y[index],
                                         dif_x[index] / self.scaleratio)

        # Set angles to create arrow
        ang1 = [i + self.angle for i in barb_ang]
        ang2 = [i - self.angle for i in barb_ang]

        cos_ang1 = [None] * len(ang1)
        for index in range(len(ang1)):
            cos_ang1[index] = math.cos(ang1[index])
        seg1_x = [i * j for i, j in zip(arrow_len, cos_ang1)]

        sin_ang1 = [None] * len(ang1)
        for index in range(len(ang1)):
            sin_ang1[index] = math.sin(ang1[index])
        seg1_y = [i * j for i, j in zip(arrow_len, sin_ang1)]

        cos_ang2 = [None] * len(ang2)
        for index in range(len(ang2)):
            cos_ang2[index] = math.cos(ang2[index])
        seg2_x = [i * j for i, j in zip(arrow_len, cos_ang2)]

        sin_ang2 = [None] * len(ang2)
        for index in range(len(ang2)):
            sin_ang2[index] = math.sin(ang2[index])
        seg2_y = [i * j for i, j in zip(arrow_len, sin_ang2)]

        # Set coordinates to create arrow
        for index in range(len(self.end_x)):
            point1_x = [
                i - j * self.scaleratio for i, j in zip(self.end_x, seg1_x)
            ]
            point1_y = [i - j for i, j in zip(self.end_y, seg1_y)]
            point2_x = [
                i - j * self.scaleratio for i, j in zip(self.end_x, seg2_x)
            ]
            point2_y = [i - j for i, j in zip(self.end_y, seg2_y)]

        # Combine lists to create arrow
        empty = [None] * len(self.end_x)
        arrow_x = utils.flatten(zip(point1_x, self.end_x, point2_x, empty))
        arrow_y = utils.flatten(zip(point1_y, self.end_y, point2_y, empty))
        return arrow_x, arrow_y
예제 #10
0
    def get_quiver_arrows(self):
        """
        Creates lists of x and y values to plot the arrows

        Gets length of each barb then calculates the length of each side of
        the arrow. Gets angle of barb and applies angle to each side of the
        arrowhead. Next uses arrow_scale to scale the length of arrowhead and
        creates x and y values for arrowhead point1 and point2. Finally x and y
        values for point1, endpoint and point2s for each arrowhead are
        separated by a None and zipped to create lists of x and y values for
        the arrows.

        :rtype: (list, list) arrow_x, arrow_y: list of point1, endpoint, point2
            x_values separated by a None to create the arrowhead and list of
            point1, endpoint, point2 y_values separated by a None to create
            the barb of the arrow.
        """
        dif_x = [i - j for i, j in zip(self.end_x, self.x)]
        dif_y = [i - j for i, j in zip(self.end_y, self.y)]

        # Get barb lengths(default arrow length = 30% barb length)
        barb_len = [None] * len(self.x)
        for index in range(len(barb_len)):
            barb_len[index] = math.hypot(dif_x[index] / self.scaleratio, dif_y[index])

        # Make arrow lengths
        arrow_len = [None] * len(self.x)
        arrow_len = [i * self.arrow_scale for i in barb_len]

        # Get barb angles
        barb_ang = [None] * len(self.x)
        for index in range(len(barb_ang)):
            barb_ang[index] = math.atan2(dif_y[index], dif_x[index] / self.scaleratio)

        # Set angles to create arrow
        ang1 = [i + self.angle for i in barb_ang]
        ang2 = [i - self.angle for i in barb_ang]

        cos_ang1 = [None] * len(ang1)
        for index in range(len(ang1)):
            cos_ang1[index] = math.cos(ang1[index])
        seg1_x = [i * j for i, j in zip(arrow_len, cos_ang1)]

        sin_ang1 = [None] * len(ang1)
        for index in range(len(ang1)):
            sin_ang1[index] = math.sin(ang1[index])
        seg1_y = [i * j for i, j in zip(arrow_len, sin_ang1)]

        cos_ang2 = [None] * len(ang2)
        for index in range(len(ang2)):
            cos_ang2[index] = math.cos(ang2[index])
        seg2_x = [i * j for i, j in zip(arrow_len, cos_ang2)]

        sin_ang2 = [None] * len(ang2)
        for index in range(len(ang2)):
            sin_ang2[index] = math.sin(ang2[index])
        seg2_y = [i * j for i, j in zip(arrow_len, sin_ang2)]

        # Set coordinates to create arrow
        for index in range(len(self.end_x)):
            point1_x = [i - j * self.scaleratio for i, j in zip(self.end_x, seg1_x)]
            point1_y = [i - j for i, j in zip(self.end_y, seg1_y)]
            point2_x = [i - j * self.scaleratio for i, j in zip(self.end_x, seg2_x)]
            point2_y = [i - j for i, j in zip(self.end_y, seg2_y)]

        # Combine lists to create arrow
        empty = [None] * len(self.end_x)
        arrow_x = utils.flatten(zip(point1_x, self.end_x, point2_x, empty))
        arrow_y = utils.flatten(zip(point1_y, self.end_y, point2_y, empty))
        return arrow_x, arrow_y