def visualize_shares_post(dates,vk,fb,tw, post_id, title): locale.setlocale(locale.LC_ALL, 'en_US.utf8') api_key = os.environ.get("PLOTLY_KEY_API") py.sign_in('SergeyParamonov', api_key) vk_trace = Scatter( x=dates, y=vk, mode='lines+markers', name=u"Вконтакте" ) fb_trace = Scatter( x=dates, y=fb, mode='lines+markers', name=u"Facebook" ) tw_trace = Scatter( x=dates, y=tw, mode='lines+markers', name=u"Twitter" ) data = Data([vk_trace,fb_trace,tw_trace]) layout = Layout(title=u"Репосты: " + title, xaxis= XAxis(title=u"Московское время"), # x-axis title yaxis= YAxis(title=u"Репосты"), # y-axis title hovermode='closest', # N.B hover -> closest data pt ) plotly_fig = Figure(data=data, layout=layout) plotly_filename = "monitor_post_id_" + str(post_id) + "_" + "shares" unique_url = py.plot(plotly_fig, filename=plotly_filename) return unique_url
def main(): try: credentials = tls.get_credentials_file() except: ## except credentials error and print for them to enter something credentials = {} credentials['username'] = raw_input("Plotly Username: "******"api key: ") ### get password py.sign_in(credentials['username'], credentials['api_key']) survey_file = "survey.csv" run_data = d.main() for runner in run_data.runners: runner.make_data() print runner.median #print runner.num , runner.total , runner.count, runner.avg, runner.dur, runner.mpd, runner.rpd INDEX = completeSurvey() #SD is a SurveyData object, has all of the respondents SD = read_survey(survey_file, run_data, INDEX) mydict = SD.makeDictionary() SD.groupSocial() SD.groupStarter() SD.groupQ1() SD.groupQ2() #list of runners that did not respond nonResponders = sort(run_data, SD) #list of runners that did respond surveyResponders = SD.responses plotQ1(SD) #plotQ2(SD) #starters(SD) plotSocial(SD)
def e20_12_to_15(): """E20 since Jan2012 to Jun2015""" py.sign_in("littlejab", "yblima8sc3") chart_min = go.Bar( x = ["2012", "2013", "2014", "2015"], y = [34.34, 33.79, 34.37, 26.26], name = "Min" ) chart_avg = go.Bar( x = ["2012", "2013", "2014", "2015"], y = [34.35, 33.82, 34.35, 26.26], name = "Average" ) chart_max = go.Bar( x = ["2012", "2013", "2014", "2015"], y = [34.36, 33.87, 34.43, 26.32], name = "Max" ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode = "group" ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename = "E20 All Year")
def plot_sentiment(credentials, filename, sentiment, prop): access = lambda sen: sen.polarity if prop == "subjectivity": access = lambda sen: sen.subjectivity py.sign_in(credentials[0], credentials[1]) data = Data( [Histogram( x=[access(story) for story in x[1]], name=x[0], histnorm="percent", autobinx=False, xbins=XBins( start=-1.1, end=1.1, size=0.05, ) ) for x in sentiment]) layout = Layout( title=prop + " of news sources.", barmode='stack' ) fig = Figure(data=data, layout=layout) plot_url = py.plot(fig, filename=filename) print "Your plot.ly is done at", plot_url
def e20_2014(): """E20 year 2014 price graph""" py.sign_in("littlejab", "yblima8sc3") chart_min = go.Bar( x = ["Jan 14", "Feb 14", "Mar 14", "Apr 14", "May 14", "Jun 14", "Jul 14", "Aug 14", \ "Sep 14", "Oct 14", "Nov 14", "Dec 14"], y = [35.58, 35.58, 35.81, 35.94, 36.07, 35.85, 35.67, 34.94, 33.98, 33.11, 31.67, 28.20], name = "Min" ) chart_avg = go.Bar( x = ["Jan 14", "Feb 14", "Mar 14", "Apr 14", "May 14", "Jun 14", "Jul 14", "Aug 14", \ "Sep 14", "Oct 14", "Nov 14", "Dec 14"], y = [35.74, 35.22, 35.81, 35.94, 36.07, 35.87, 35.68, 34.94, 33.98, 33.11, 31.67, 28.20], name = "Average" ) chart_max = go.Bar( x = ["Jan 14", "Feb 14", "Mar 14", "Apr 14", "May 14", "Jun 14", "Jul 14", "Aug 14", \ "Sep 14", "Oct 14", "Nov 14", "Dec 14"], y = [35.76, 35.58, 35.81, 35.94, 36.15, 36.08, 35.81, 34.94, 33.98, 33.11, 31.73, 28.23], name = "Max" ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode = "group" )
def dataPlotlyHandler(): py.sign_in(username, api_key) trace1 = Scatter( x=[], y=[], stream=dict( token=stream_token, maxpoints=200 ) ) layout = Layout( title='Hello Internet of Things 101 Data' ) fig = Figure(data=[trace1], layout=layout) print py.plot(fig, filename='Hello Internet of Things 101 Plotly') i = 0 stream = py.Stream(stream_token) stream.open() while True: stream_data = dataPlotly() stream.write({'x': i, 'y': stream_data}) i += 1 time.sleep(0.25)
def main(): py.sign_in('JDGrillo', 'ymn6lb95az') trace = go.Scatter( x = [1991,1992,1993,1994], y = [2,4,3,9], mode = 'markers' ) data = [trace] layout = go.Layout( xaxis=dict( title="X-Axis", titlefont=dict( family='Arial, sans-serif', size = 18, color='grey' ), showexponent='All' ), yaxis=dict( title="Y-Axis", titlefont=dict( family='Arial, sans-serif', size = 18, color='lightgrey' ), showexponent='All' ) ) pplot = go.Figure(data = data, layout=layout) py.plot(pplot,filename= 'scatter')
def test_stream_validate_data(self): with self.assertRaises(exceptions.PlotlyError): py.sign_in(un, ak) my_stream = py.Stream(tk) my_stream.open() my_stream.write(dict(x=1, y=10, z=[1])) # assumes scatter... my_stream.close()
def main(argv): contest_id = int(argv[1]) print('Loading problems...') problem_indices = [problem.index for problem in load_problems(contest_id)] print('Problems loaded') print('Loading hacks...') hacks = load_hacks(contest_id) print('Hacks loaded') grouped_by_verdict = sorted(group_hacks_by_verdict(hacks).items(), key=lambda t: get_verdict_order(t[0]), reverse=True) grouped_by_verdict_and_problems = [ (t[0], sorted(get_hacks_count_by_problem(t[1], problem_indices).items())) for t in grouped_by_verdict ] bars = create_bars(grouped_by_verdict_and_problems) py.sign_in('Python-Demo-Account', 'gwt101uhh0') data = Data(list(bars)) fig = plot_graph(data, contest_id) py.image.save_as(fig, 'awesome_image.png')
def plotAvgNumJobsInSys(self): py.sign_in('mailacrs','wowbsbc0qo') trace0 = Scatter(x=NumJobsTime, y=AvgNumJobs) data = [trace0] layout = go.Layout( title='Average Number of Jobs Over Time', xaxis=dict( title='Time', titlefont=dict( family='Courier New, monospace', size=18, color='#7f7f7f' ) ), yaxis=dict( title='Number of Jobs', titlefont=dict( family='Courier New, monospace', size=18, color='#7f7f7f' ) ) ) fig = go.Figure(data=data, layout=layout) unique_url = py.plot(fig, filename = 'SRPT_AvgNumJobs')
def test_stream_validate_layout(self): with self.assertRaises(exceptions.PlotlyError): py.sign_in(un, ak) my_stream = py.Stream(tk) my_stream.open() my_stream.write(Scatter(x=1, y=10), layout=Layout(legend=True)) my_stream.close()
def e85_2015(): """E85 year 2015 price graph""" py.sign_in("littlejab", "yblima8sc3") chart_min = go.Bar( x = ["Jan 15", "Feb 15", "Mar 15", "Apr 15", "May 15", "Jun 15"], y = [21.98, 22.67, 23.48, 22.81, 23.19, 23.37], name = "Min" ) chart_avg = go.Bar( x = ["Jan 15", "Feb 15", "Mar 15", "Apr 15", "May 15", "Jun 15"], y = [21.98, 22.67, 23.48, 22.81, 23.19, 23.37], name = "Average" ) chart_max = go.Bar( x = ["Jan 15", "Feb 15", "Mar 15", "Apr 15", "May 15", "Jun 15"], y = [21.98, 22.67, 23.48, 22.81, 23.19, 23.37], name = "Max" ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode = "group" ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename="E85 2015")
def graph(self,gp): x1=[] y1=[] py.sign_in('Python-Demo-Account', 'gwt101uhh0') for row in gp: y1.append(row[0]) x1.append(row[1]) trace1 = Scatter( x=[x1[0], x1[1], x1[2], x1[3], x1[4]], y=[y1[0], y1[1], y1[2], y1[3], y1[4]], mode='markers', name='Runtime Data', text=['Run 1', 'Run 2', 'Run 3', 'Run 4', 'Run 5'], marker=Marker( color='rgb(164, 194, 244)', size=12, line=Line( color='white', width=0.5 ) ) ) data = Data([trace1]) layout = Layout( title='IDA* Results', xaxis=XAxis( title='Depth' ), yaxis=YAxis( title='Nodes Expanded' ) ) fig = Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='Run Time Data')
def graph_e10_2015(): """show graph of gas e10 price in year 2015 by min, avg, max""" import plotly.plotly as py import plotly.graph_objs as go py.sign_in('littlejab', 'yblima8sc3') chart_min = go.Bar( x=['Jan 15', 'Feb 15', 'Mar 15', 'Apr 15', 'May 15', 'Jun 15'], y=[28.04, 28.47, 29.35, 28.1, 29.08, 29.57], name='Min' ) chart_avg = go.Bar( x=['Jan 15', 'Feb 15', 'Mar 15', 'Apr 15', 'May 15', 'Jun 15'], y=[28.04, 28.53, 29.36, 28.11, 29.08, 29.59], name='Average' ) chart_max = go.Bar( x=['Jan 15', 'Feb 15', 'Mar 15', 'Apr 15', 'May 15', 'Jun 15'], y=[28.04, 28.67, 29.39, 28.17, 29.13, 29.64], name='Max' ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode='group' ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='E10 2015')
def plotLy(self): userID = self.userName_box.text() userKey = self.userKey_box.text() py.sign_in(userId, userKey) # sign into plot.ly f2 = open('spectra.dat', 'r') # open the spectra.dat file for reading into the graph lines = f2.readlines() # read the entire file into a single variable f2.close() # close the spectra.dat file x1 = [] # initialize the X coord y1 = [] # initialize the y coord for line in lines: p = line.split() # scan the rows of the file stored in lines, and put the values if len(p) != 2: print("error") continue x1.append(float(p[0])) # into some variables: y1.append(float(p[1])) xv = np.array(x1) # set the array for x yv = np.array(y1) # set the array for y timestr = time.strftime("%Y%m%d%H%M%S") plotly_trace1 = Scatter(x=xv, y=yv) # add data to plot.ly array plotly_data = Data([plotly_trace1]) # send data to plot.ly plot_url = py.plot(plotly_data, filename='ramanPi' + timestr) # create graph and display on plot.ly
def e85_12_to_15(): py.sign_in("littlejab", "yblima8sc3") chart_min = go.Bar( x = ["2012", "2013", "2014", "2015"], y = [22.22, 22.73, 24.11, 22.92], name = "Min" ) chart_avg = go.Bar( x = ["2012", "2013", "2014", "2015"], y = [22.23, 22.74, 24.11, 22.92], name = "Average" ) chart_max = go.Bar( x = ["2012", "2013", "2014", "2015"], y = [22.23, 22.74, 24.11, 22.92], name = "Max" ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode = "group" ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename = "E85 All Year")
def graph_gas95_allyears(): """show graph of gas95 price allyears by min, avg, max""" import plotly.plotly as py import plotly.graph_objs as go py.sign_in('littlejab', 'yblima8sc3') chart_min = go.Bar( x=['2012', '2013', '2014', '2015'], y=[46.27, 46.41, 46.43, 34.87], name='Min' ) chart_avg = go.Bar( x=['2012', '2013', '2014', '2015'], y=[46.42, 46.66, 46.73, 35.17], name='Average' ) chart_max = go.Bar( x=['2012', '2013', '2014', '2015'], y=[47.19, 46.91, 46.92, 35.37], name='Max' ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode='group' ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='Gasoline 95 All Year')
def graph_allyears(): """show graph of gas e10 price allyears by min, avg, max""" import plotly.plotly as py import plotly.graph_objs as go py.sign_in('littlejab', 'yblima8sc3') chart_min = go.Bar( x=['2012', '2013', '2014', '2015'], y=[37.94, 38.8, 38.83, 28.77], name='Min' ) chart_avg = go.Bar( x=['2012', '2013', '2014', '2015'], y=[37.96, 38.89, 38.85, 28.79], name='Average' ) chart_max = go.Bar( x=['2012', '2013', '2014', '2015'], y=[38.01, 38.95, 38.94, 28.84], name='Max' ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode='group' ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='E10 All Year')
def diesel_2014(): """Display monthly chart for diesel price in Thailand 2014.""" import plotly.plotly as py import plotly.graph_objs as go py.sign_in('littlejab', 'yblima8sc3') chart_min = go.Bar( x = ['Jan 14', 'Feb 14', 'Mar 14', 'Apr 14', 'May 14', 'Jun 14', 'Jul 14', 'Aug 14', \ 'Sep 14', 'Oct 14', 'Nov 14', 'Dec 14'], y = [29.99, 29.99, 29.99, 29.99, 29.99, 29.91, 29.85, 29.86, 29.99, 29.66, 29.41, 27.6], name = 'Min' ) chart_avg = go.Bar( x = ['Jan 14', 'Feb 14', 'Mar 14', 'Apr 14', 'May 14', 'Jun 14', 'Jul 14', 'Aug 14', \ 'Sep 14', 'Oct 14', 'Nov 14', 'Dec 14'], y = [29.99, 29.99, 29.99, 29.99, 29.99, 29.91, 29.85, 29.86, 29.99, 29.66, 29.42, 27.64], name = 'Average' ) chart_max = go.Bar( x = ['Jan 14', 'Feb 14', 'Mar 14', 'Apr 14', 'May 14', 'Jun 14', 'Jul 14', 'Aug 14', \ 'Sep 14', 'Oct 14', 'Nov 14', 'Dec 14'], y = [29.99, 29.99, 29.99, 29.99, 30.05, 30.01, 29.85, 29.86, 29.99, 29.66, 29.42, 27.91], name = 'Max' ) data = [chart_min, chart_avg, chart_max] layout = go.Layout(barmode = 'group') fig = go.Figure(data = data, layout = layout) plot_url = py.plot(fig, filename = 'Diesel 2014')
def __init__(self, title): self.title = title self.directorycurrent = os.path.dirname(os.path.realpath(__file__)) self.directoryconfiguration = self.directorycurrent + '/../configuration/' self.configuration = ConfigParser.ConfigParser() self.credentialspath = self.directoryconfiguration + "credentials.config" self.configuration.read(self.credentialspath) self.username = self.configuration.get('plotly','username') self.apikey = self.configuration.get('plotly','apikey') self.streamtoken = self.configuration.get('plotly','streamtoken') py.sign_in(self.username, self.apikey) stream_data = Scatter( x=[], y=[], stream=dict( token=self.streamtoken, ) ) layout = Layout( title = self.title ) this = Figure(data=[stream_data], layout=layout) py.plot(this, filename=self.title, auto_open=False) self.stream = py.Stream(self.streamtoken) self.stream.open() time.sleep(5)
def main(): parser = argparse.ArgumentParser(parents=[o2c.tools.argparser]) parser.add_argument('--no-plot', help="don't plot", action='store_true') flags = parser.parse_args() gmail_service = g_authorized(flags) searches = {'primary_unread': 'category:primary is:unread', 'primary_total': 'category:primary', 'inbox_unread': 'in:inbox is:unread', 'inbox_total': 'in:inbox'} counts = {key: count_threads(gmail_service, search) for key, search in searches.iteritems()} if flags.no_plot: return plotly_key = grab(PLOTLY_KEY_FILE) plotly_username = grab(PLOTLY_USERNAME_FILE) polite_names = {'primary_unread': 'Primary inbox, unread', 'primary_total': 'Primary inbox', 'inbox_unread': 'Inbox, unread', 'inbox_total': 'Inbox'} now = datetime.datetime.now() data = go.Data([go.Scatter(x=[now], y=[counts[key]], mode='lines+markers', name=polite_names[key]) for key in counts]) layout = go.Layout(title="Emails in inbox") fig = go.Figure(data=data, layout=layout) plotly.sign_in(plotly_username, plotly_key) url = plotly.plot(fig, filename='gmail-plotly', fileopt='extend', world_readable=PLOTLY_WORLD_READABLE, auto_open=False) print url
def sign_in(file_name): '''read credentials from config file, and log in to Plot.ly''' conf_parser = ConfigParser() conf_parser.read(file_name) username = conf_parser.get('authentication', 'username') api_key = conf_parser.get('authentication', 'api_key') py.sign_in(username, api_key)
def graph_gas95_2013(): """show graph of gas95 price in year 2013 by min, avg, max""" import plotly.plotly as py import plotly.graph_objs as go py.sign_in('littlejab', 'yblima8sc3') chart_min = go.Bar( x=['Jan 13', 'Feb 13', 'Mar 13', 'Apr 13', 'May 13', 'Jun 13', 'Jul 13', 'Aug 13', \ 'Sep 13', 'Oct 13', 'Nov 13', 'Dec 13'], y=[46.27, 48.2, 47.33, 45.03, 44.79, 45.91, 47.4, 46.94, 46.58, 46.09, 45.95, 47.26], name='Min' ) chart_avg = go.Bar( x=['Jan 13', 'Feb 13', 'Mar 13', 'Apr 13', 'May 13', 'Jun 13', 'Jul 13', 'Aug 13', \ 'Sep 13', 'Oct 13', 'Nov 13', 'Dec 13'], y=[47.03, 48.41, 47.33, 45.05, 44.82, 46.02, 47.62, 46.98, 47.06, 46.4, 46.55, 47.65], name='Average' ) chart_max = go.Bar( x=['Jan 13', 'Feb 13', 'Mar 13', 'Apr 13', 'May 13', 'Jun 13', 'Jul 13', 'Aug 13', \ 'Sep 13', 'Oct 13', 'Nov 13', 'Dec 13'], y=[48.27, 48.64, 47.33, 45.16, 44.88, 46.14, 47.68, 47.05, 47.38, 46.6, 46.83, 47.83], name='Max' ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode='group' ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='Gasoline 95 2013')
def plotly(self, rc): import plotly.plotly as py from plotly.graph_objs import Layout,Figure def df_to_iplot(inp): ''' Coverting a Pandas Data Frame to Plotly interface ''' df = inp.dataframe del df["est"] lines={} x = df.columns.values[2:] for i in range(len(df)): row = df.iloc[i] key = row["industry"] lines[key]={} lines[key]["x"]=x lines[key]["y"]=row[2:].values lines[key]["name"]=key #Appending all lines lines_plotly=[lines[key] for key in lines] return lines_plotly py.sign_in("pyrrho", "04n3iw0mae") for inp in rc.get_inputs(): df = inp.dataframe data = df_to_iplot(inp) layout = Layout( title = inp.basename ) fig = Figure(data=data, layout=layout) unique_url = py.plot(data, filename = inp.basename, auto_open=False) log.status("plot for %s found at %s" % (inp.basename, unique_url)) yield rc
def forward(configuration, readings): print("Plotlying... {0}.".format(readings)) # TODO We need a process running in continue to stream # to Plotly. We really do need to implement the forwarding # with an independant app, dispatching readings coming from a broker. py.sign_in(configuration['plotly']['username'], configuration['plotly']['apiKey']) url = py.plot( Figure( layout=Layout( title=configuration['plotly']['plotTitle'], xaxis=dict(title='Timestamp'), yaxis=dict(title='Dose (uSv/h)')), data=Data([ Scatter( x=[], y=[], mode='lines', stream=Stream( token=configuration['plotly']['streamingToken']))])), filename=configuration['plotly']['plotTitle']) print("Plotly graph URL: {0}".format(url)) stream = py.Stream(configuration['plotly']['streamingToken']) stream.open() stream.write(dict(x=readings['timestamp'], y=readings['uSvh'])) stream.close() print("Plotly Ok.")
def e85_2014(): """E85 year 2014 price graph""" py.sign_in("littlejab", "yblima8sc3") chart_min = go.Bar( x = ["Jan 14", "Feb 14", "Mar 14", "Apr 14", "May 14", "Jun 14", "Jul 14", "Aug 14", \ "Sep 14", "Oct 14", "Nov 14", "Dec 14"], y = [24.45, 24.38, 24.52, 24.57, 24.70, 24.61, 24.51, 24.28, 24.28, 23.48, 22.88, 22.65], name = "Min" ) chart_avg = go.Bar( x = ["Jan 14", "Feb 14", "Mar 14", "Apr 14", "May 14", "Jun 14", "Jul 14", "Aug 14", \ "Sep 14", "Oct 14", "Nov 14", "Dec 14"], y = [24.45, 24.38, 24.52, 24.56, 24.67, 24.61, 24.51, 24.28, 24.28, 23.48, 22.88, 22.65], name = "Average" ) chart_max = go.Bar( x = ["Jan 14", "Feb 14", "Mar 14", "Apr 14", "May 14", "Jun 14", "Jul 14", "Aug 14", \ "Sep 14", "Oct 14", "Nov 14", "Dec 14"], y = [24.45, 24.38, 24.38, 24.52, 24.57, 24.70, 24.61, 24.51, 24.28, 23.48, 22.88, 22.65], name = "Max" ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode = "group" ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename = "E85 2014")
def create_heroes_dmg_cost_graphs(): heroes_data = read_heroes_dmg_cost_data('./Output/Heroes_Dmg_Cost') plotly.sign_in("haukurpalljonsson", "dr78f5q3yh") dps_data = [] dps_data_total = [] for x in range(1, len(heroes_data) + 1): axis_levels = [] axis_dps_increase = [] axis_dps_increase_total = [] hero_key = str(x) #I know (has to be fixed) that the first level inserted is 1 for y in range(1, int(len(heroes_data[hero_key])/2) + 1): level_key = str(y) level_key_total = str(y) + '+' axis_levels.insert(y-1, y) axis_dps_increase.insert(y-1, int(heroes_data[hero_key][level_key][1])) axis_dps_increase_total.insert(y-1, int(heroes_data[hero_key][level_key_total][1])) #moa dps_trace = Scatter(x=axis_levels, y=axis_dps_increase) dps_data.append(dps_trace) dps_trace_total = Scatter(x=axis_levels, y=axis_dps_increase_total) dps_data_total.append(dps_trace_total) print(plotly.plot(dps_data, filename='dps_increase')) print(plotly.plot(dps_data_total, filename='dps_increase_total'))
def setup(self): my_creds = tls.get_credentials_file() # read credentials py.sign_in(my_creds['username'], my_creds['api_key']) # (New syntax!) Plotly sign in tls.embed('streaming-demos','6') my_stream_ids = tls.get_credentials_file()['stream_ids'] # Get stream id from stream id list self.my_stream_id = my_stream_ids[0] # Make instance of stream id object my_stream = Stream(token=self.my_stream_id, # N.B. link stream id to 'token' key maxpoints=200) # N.B. keep a max of 80 pts on screen # Initialize trace of streaming plot by embedding the unique stream_id my_data = Data([Scatter(x=[], y=[], mode='lines+markers', stream=my_stream)]) # embed stream id, 1 per trace # Add title to layout object my_layout = Layout(title='Quake monitor') # Make instance of figure object my_fig = Figure(data=my_data, layout=my_layout) # Initialize streaming plot, open new tab unique_url = py.plot(my_fig, filename='qm_first-stream')
def main(): rawData = loadData(PATH_TO_DATA) rawData = splitDataByArrangement(rawData) avgData = averageArrangmentData(rawData) # graphData = createTracesForRaw(rawData, 'loopLength','audio_time') graphData = createTraceForAvg(avgData, 'audio_time', 'totalTime', name="audio") graphData += createTraceForAvg(avgData, 'init_time', 'totalTime', name="init") graphData += createTraceForAvg(avgData, 'other_time', 'totalTime', name="other") graphData += createTraceForAvg(avgData, 'non_time', 'totalTime', name="non") layout = go.Layout( title='Total Rendering Time vs Audio/Initialization Time', hovermode='closest', xaxis=dict( title='Time Spent on Stage (s)' ), yaxis=dict( title='Total Rendering Time (s)' ), ) py.sign_in("MysteryDate", "a6fd7sm5jr") fig = go.Figure(data=graphData, layout=layout) plot_url = py.plot(fig, filename="Sources of Rendering Time")
def e85_2013(): """E85 year 2013 price graph""" py.sign_in("littlejab", "yblima8sc3") chart_min = go.Bar( x = ["Jan 13", "Feb 13", "Mar 13", "Apr 13", "May 13", "Jun 13", "Jul 13", "Aug 13", \ "Sep 13", "Oct 13", "Nov 13", "Dec 13"], y = [21.83, 22.76, 22.91, 21.88, 21.82, 22.66, 23.57, 23.19, 23.27, 22.98, 23.19, 23.78], name = "Min" ) chart_avg = go.Bar( x = ["Jan 13", "Feb 13", "Mar 13", "Apr 13", "May 13", "Jun 13", "Jul 13", "Aug 13", \ "Sep 13", "Oct 13", "Nov 13", "Dec 13"], y = [21.83, 22.84, 22.91, 21.88, 21.82, 22.66, 23.57, 23.19, 23.27, 22.98, 23.19, 23.78], name = "Average" ) chart_max = go.Bar( x = ["Jan 13", "Feb 13", "Mar 13", "Apr 13", "May 13", "Jun 13", "Jul 13", "Aug 13", \ "Sep 13", "Oct 13", "Nov 13", "Dec 13"], y = [21.83, 22.89, 22.91, 21.88, 21.82, 22.66, 23.57, 23.19, 23.27, 22.98, 23.19, 23.78], name = "Max" ) data = [chart_min, chart_avg, chart_max] layout = go.Layout( barmode = "group" ) fig = go.Figure(data=data, layout=layout) plot_url = py.plot(fig, filename = "E85 2013")
from __future__ import print_function from future.standard_library import install_aliases import requests install_aliases() # not sure what this does... import plotly.plotly as py from plotly.graph_objs import * url = "https://staging.kitomba.com/k1/clients_ajax/get_client_appointments_info_for_day/Today/93895ccd5153edb2f7b09193b9225f89/all" token = "8623a3ff07832d2fe4d7079aa811745d" headers = {'Token': token} py.sign_in('paul.sinclair', '20xGivFuRABOeYkaCyTq') # {'id': '654ceea0-564f-4160-841c-e4d3ee330134', 'timestamp': '2017-06-22T05:14:41.26Z', 'lang': 'en', # 'result': {'source': 'agent', 'resolvedQuery': 'invoice', 'speech': '', 'action': 'test2', 'actionIncomplete': False, # 'parameters': {'token': 'fb83a162598f007adc00609d6adfc5a7'}, 'contexts': [{'name': 'logged_in', # 'parameters': { # 'token.original': '', # 'password': '******', # 'email.original': '*****@*****.**', # 'password.original': 'hard24get', # 'email': '*****@*****.**', # 'token': 'fb83a162598f007adc00609d6adfc5a7'}, # 'lifespan': 497}, # {'name': 'token', 'parameters': { # 'token.original': '', # 'password': '******', # 'email.original': '*****@*****.**', # 'password.original': 'hard24get', # 'email': '*****@*****.**',
import billboard import plotly.plotly as py import plotly.graph_objs as go from datetime import datetime, timedelta from app import db, models import dateutil.parser as parser from sqlalchemy import exists, desc import config as Config py.sign_in(Config.user, Config.api_key) song_id_max=0 artist_id_max=0 def insertsongs(NAMEOFGENRE): global song_id_max global artist_id_max chart = billboard.ChartData(NAMEOFGENRE, date = '2016-01-01') while(chart.date < '2017-07-24'): for i in chart: date = datetime.strptime(chart.date, '%Y-%m-%d') artist = i.artist print (i.title) print (artist) #-------------Calculating Point Position------------------------------ Points = 101 for b in range(i.rank): Points = Points - 1
from flask import render_template, flash, request, url_for, redirect from flask.ext.login import login_user, logout_user, login_required, current_user from .forms import LoginForm, RegisterForm, CreateLinkForm, CustomLinkForm from . import app, db from .models import User, Link, Custom, Click from datetime import datetime from sqlalchemy import desc import plotly.plotly as py from plotly.graph_objs import * py.sign_in('bodandly', 'plmh01cnfk') def flash_errors(form, category="warning"): '''Flash all errors for a form.''' for field, errors in form.errors.items(): for error in errors: flash("{0} - {1}".format(getattr(form, field).label.text, error), category) @app.route('/') def index(): links = Link.query.order_by(Link.id).all() return render_template('index.html', links=links, base_url=request.url_root) @app.route('/login', methods=['GET', 'POST'])
import csv import plotly.plotly as py from plotly.graph_objs import * py.sign_in('aul99999', 'YJdLMTY53oqOanHFhxrw') with open("ProjectPSIT.csv", "r") as database: reader = csv.DictReader(database) month = {} num = 1 for i in reader: month.setdefault(num, [i["YEAR"], i["2557"]]) num += 1 xReader = [] yReader = [] for i in sorted(month): xReader.append(month[i][0]) yReader.append(int(month[i][1])) trace1 = Scatter(x=xReader, y=yReader) data = Data([trace1]) plot_url = py.plot(data)
import plotly.plotly as py from plotly.graph_objs import * py.sign_in('Happy_Das', 'gqFHrnV4u2yQkUdckBtD') X, Y = [], [] for line in open( '../Results/Capital_Country/Main_Capital_Country_Average_Accuracy.txt', 'r'): values = [str(s) for s in line.split()] X.append(values[0]) Y.append(values[1]) data1 = { "x": X, "y": Y, "name": "Accuracy for Country-Capital", "type": "scatter" } X, Y = [], [] for line in open( '../Results/Currency_Country/Main_Currency_Country_Average_Accuracy.txt', 'r'): values = [str(s) for s in line.split()] X.append(values[0]) Y.append(values[1]) data2 = { "x": X, "y": Y, "name": "Accuracy for Country-Currency", "type": "scatter"
def init(): py.sign_in('PythonTest', '9v9f20pext')
import sys import gzip import glob import os import re import numpy as np import pandas as pd from scipy.stats import linregress import matplotlib.pyplot as plt import deepOceanTemp import netCDF4 as nc import plotly.plotly as py # for sending things to plotly import plotly.graph_objs as go import plotly.tools as tls # for mpl, config, etc. py.sign_in('JeremyFyke', 'u28du98cke') plot_online = 0 #if 0, then prints static plots locally. plot_GLC_timeseries = 1 plot_ocean_temperature_timeseries = 0 plot_AMOC_timeseries = 0 plot_calving_flux = 1 suffix = '' suffix2 = '_restoring' user_space = 'jfyke' output_dir = 'plots' + suffix if not os.path.exists(output_dir): os.makedirs(output_dir)
def setUp(self): super(TestStreaming, self).setUp() py.sign_in(un, ak, **config)
import time import pandas as pd import numpy as np import plotly.plotly as py from plotly.graph_objs import * import deepLearningTest import paramSVR from sklearn import preprocessing # py.sign_in('sunjiannankai', 'r8kdW8nbxiw5HJeCehBj') py.sign_in('JianSun', 'AmAEUGYZCUR2D1dxFCZk') if __name__ == '__main__': funNum = 3 # the number of function for deep learning method 1:normal,2:more neurons 3: more layers typeTrainDB = 3 # 1: only OTUs 2: only easy_get para 3: OUT + easy_get start = time.time() # targetNormal = True # the target is normalized or not isRegression = False isCheckPara = False targetNormal = isCheckPara if typeTrainDB == 1: figureTitle = "The reliability of SVR, Random Forest and NN. Use OTU only" elif typeTrainDB == 2: figureTitle = "The reliability of SVR, Random Forest and NN. Use Easy-get parameters only" elif typeTrainDB == 3: figureTitle = "The reliability of SVR, Random Forest and NN. Use both OTU and Easy parameters" targetList = ['salinity'] # targetList = ['salinity', 'Depth', 'Temperature', 'O2', 'PO4', 'SiO2', 'NO2', 'NO3']
import os from bottle import run, template, get, post, request import plotly.plotly as py from plotly.graph_objs import * import json # grab username and key from config/data file with open('data.json') as config_file: config_data = json.load(config_file) username = config_data["user"] key = config_data["key"] py.sign_in(username, key) @get('/plot') def form(): return template('template', title='Plot.ly Graph') @post('/plot') def submit(): # grab data from form Y01 = request.forms.get('Y01') Y02 = request.forms.get('Y02') Y03 = request.forms.get('Y03') Y04 = request.forms.get('Y04') Y11 = request.forms.get('Y11') Y12 = request.forms.get('Y12')
import serial, time # Serial and Time import datetime # Current Date and Time from webiopi.devices.serial import Serial # Webiopi Serial import webiopi # Webiopi Library import plotly.plotly as py # plotly library from plotly.graph_objs import Scatter, Layout, Figure, Data, Stream, YAxis ############################################################### ##################### Sets up plotly details ################## username = '******' api_key = 'k53c99f7d1' stream_token_temperature = 'iuqh3xt5ph' stream_token_lightlevel = 'vlx5vddak3' py.sign_in('zaneshaq', 'k53c99f7d1') # JSON code for plotly graph trace_temperature = Scatter( x=[], y=[], name='Temp', stream=Stream(token=stream_token_temperature # Sets up temperature stream ), yaxis='y') trace_lightlevel = Scatter( x=[], y=[], name='Light %', stream=Stream(token=stream_token_lightlevel # Sets up Lightlevel stream
title="A circular graph associated to Eurovision Song Contest, 2015<br>Data source:"+\ "<a href='http://www.eurovision.tv/page/history/by-year/contest?event=2083#Scoreboard'> [1]</a>" layout=Layout(title= title, font= Font(size=12), showlegend=False, autosize=False, width=width, height=height, xaxis=XAxis(axis), yaxis=YAxis(axis), margin=Margin(l=40, r=40, b=85, t=100, ), hovermode='closest'#, #annotations=Annotations([make_annotation(anno_text1, -0.07), # make_annotation(anno_text2, -0.09), # make_annotation(anno_text3, -0.11)] # ) ) data=Data(lines+edge_info+[trace2]) fig=Figure(data=data, layout=layout) py.sign_in('shivm', 'V7rWwhWSEo2YE0w3J73A') py.plot(fig, filename='Eurovision-15') #Write results results.to_csv('X:/Projects/IITDelhi/Paths/expresults2.csv', index=False) math.
Quick Python sketch to graph numbers of Trove contributors and resources from each Australian state against the population of that state. Graphs are created using Plotly's Python API. Add your Trove & Plotly credentials to credentials_fillmein.py and save as credentials.py. """ import requests import plotly.plotly as py from plotly.graph_objs import * from credentials import TROVE_API_KEY, PLOTLY_ID, PLOTLY_KEY py.sign_in(PLOTLY_ID, PLOTLY_KEY) #Trove API url to get contributor details TROVE_URL = 'http://api.trove.nla.gov.au/contributor/?encoding=json&reclevel=full&key={}' #Mapping NUC keys to state names STATES = { 'A': 'ACT', 'N': 'NSW', 'X': 'NT', 'Q': 'Qld', 'S': 'SA', 'T': 'Tas', 'V': 'Vic', 'W': 'WA' }
def signin(): py.sign_in(os.environ["PLOTLY_USERNAME"], os.environ["PLOTLY_API_KEY"])
from plotly.graph_objs import * df = pd.read_csv( "/Users/Jean/Documents/Software Engineering/UFG/mestrado/ARP/datasets/crimes-in-chicago/Chicago_Crimes_2012_to_2017.csv", sep=",") #df = pd.read_csv("/Users/Jean/Documents/Software Engineering/UFG/mestrado/ARP/finalProject/datasets/smalldatasetcrimes.csv",sep=",") df = df[df.Year == 2016] df = df[df['Primary Type'] == 'HOMICIDE'] grouped = df.groupby(['Latitude', 'Longitude' ])['Case Number'].count().reset_index(name="count") grouped = grouped.sort('count', ascending=False) print(grouped) mapbox_access_token = 'pk.eyJ1IjoiamVhbmxrcyIsImEiOiJjaXo1dThlbWswM3VwMndtbmhyNTlyazc3In0.j1ezMv-foA4UUPnJz8DYEA' py.sign_in('jeanlks', '360cSGj1UBUxHAfiDd3M') data = Data([ Scattermapbox( lat=grouped["Latitude"], lon=grouped["Longitude"], mode='markers', marker=Marker(size=grouped['count'] * 10), text=grouped['count'], ) ]) layout = Layout( autosize=True, hovermode="closest", mapbox=dict(accesstoken=mapbox_access_token, bearing=0, center=dict(lat=41.88, lon=-87.62),
import plotly.plotly as py import plotly.graph_objs as go import plotly import csv import collections import random from collections import Counter from operator import itemgetter import statistics import datetime from functools import reduce plotly.tools.set_credentials_file(username='******', api_key='CvmqbRb7CXD5VgwhRzQV') py.sign_in("kristelle", "CvmqbRb7CXD5VgwhRzQV") reader = csv.reader(open( '/Users/macbook/Desktop/FYP/files/AlphaBayMarket-transactions/AlphaBay_transactions.csv', 'rt'), delimiter=',') dictionary = [] transactions = [] for row in reader: if len(row) == 7 and row[0] != 'date' and row[2] != '': transactions.append(row) # Sort transactions by date transactions = sorted(transactions, key=lambda x: x[0])
import os import pandas as pd arr = next(os.walk('.'))[2] ts_files = [f for f in arr if '.csv' in f] print(arr) print(len(ts_files)) import plotly.plotly as py from plotly.graph_objs import * py.sign_in('aa1603', 'PHHAVAgjg4NQgXLqPTtb') layout = { "autosize": False, "height": 1000, "showlegend": False, "title": "<b>Timeseries for number Starbucks stores 2013-2016</b><br>Countries with the maximum percentage increase in number Starbucks stores. \ <br>Clean data and code available <a href='http://aa1603.georgetown.domains/ANLY503/Portfolio/live/plotly_sparkline_starbucks/'>here</a>\ <br><i>Only includes countries with at least 25 stores as of November 2016.</i>", "width": 800 } traces = [] count = 1 for f in ts_files: df = pd.read_csv(f) trace = { "x": df['x'], "y": df['y'], "fill": "tozeroy", "line": {
import ROOT as R import os, sys, glob, json import matplotlib.pyplot as plt import plotly.plotly as py from plotly.tools import FigureFactory as FF py.sign_in('username', 'api_key') def skipCategories(d): newd = {} for key in d.keys(): nkey = key # if "Jets" in key: # nkey = nkey.replace("Jets", "J") # if "Jet" in key: # nkey = nkey.replace("Jet", "J") # if "Tight" in key: # nkey = nkey.replace("Tight", "T") # if "Loose" in key: # nkey = nkey.replace("Loose", "L") if "Combination" in key: # nkey = nkey.replace("Combination", "C") newd[nkey] = d[key] return newd def main(): template_limits = "/Users/vk/software/Analysis/files/limits_higsscombined_results/v0p6_20160824_1100/76X__Cert_271036-278808_13TeV_PromptReco_Collisions16_JSON_NoL1T__Mu22" analytic_limits = "/Users/vk/software/Analysis/files/limits_higsscombined_results/v0p5_20160824_1100/76X__Cert_271036-278808_13TeV_PromptReco_Collisions16_JSON_NoL1T__Mu22" template_pattern = "explimits__templates*.json"
from mysql.connector import MySQLConnection, Error from python_mysql_dbconfig import read_db_config from bs4 import BeautifulSoup import urllib2 import numpy as np import pandas as pd import plotly.plotly as py from plotly.graph_objs import * py.sign_in("*PLOTLY USERNAME HERE", "PLOTLY API HERE") # test connection def connectSQL(): db_config = read_db_config() try: print('Connecting to MySQL database...') conn = MySQLConnection(**db_config) if conn.is_connected(): print('Connection established.') else: print('Connection failed.') except Error as error: print(error) finally: conn.close() print('Connection closed.')
import pandas as pd from dateutil import parser import plotly.plotly as py import plotly.graph_objs as go # Larkmead blocks # acres) = 44.66 # TODO: Task a parameter ('detection') # TODO: Reinstate daytotal # Input log file logpath = 'logs/larkmead_detection.log' # Plotly credentials py.sign_in('agriselwyn', '0nM9F4CYVWKsI8lIwk9X') with open(logpath, 'r') as logfile: data_in = logfile.read() # Create a dictionary of data frames, along with a total cumulative data frame sessions = set([ col.replace('detection:', '').strip() for col in re.findall('detection:[a-z0-9\-]+', data_in) ]) # Initialization frames = dict.fromkeys(sessions) for c in frames.keys(): frames[c] = pd.DataFrame(columns=['Date', 'Remaining'])
import plotly.plotly as py import numpy as np import matplotlib.pyplot as plt py.sign_in('isak.falk', 'c5db1lskr9') mpl_fig = plt.figure() x = np.random.randn(20) y = np.random.randn(20) plt.scatter(x, y) py.plot_mpl(mpl_fig, filename="plotly_figure")
from plotly import plotly, tools, exceptions import requests import json username = '******' accountkey = 'fjFaA6Af6vDjuZmjLNa0' plotly.sign_in(username, accountkey) auth = requests.auth.HTTPBasicAuth(username, accountkey) headers = {'Plotly-Client-Platform': 'python'} def make_states_plot(plot_locations, plot_data, tooltip_labels, colorscale_label, plot_title): scl = [[0.0, 'rgb(242,240,247)'],[0.2, 'rgb(218,218,235)'],[0.4, 'rgb(188,189,220)'],\ [0.6, 'rgb(158,154,200)'],[0.8, 'rgb(117,107,177)'],[1.0, 'rgb(84,39,143)']] data = [ dict(type='choropleth', colorscale=scl, autocolorscale=False, locations=plot_locations, z=plot_data, locationmode='USA-states', text=tooltip_labels, marker=dict(line=dict(color='rgb(0,0,0)', width=2)), colorbar=dict(title=colorscale_label)) ] layout = dict( title=plot_title,
import plotly.plotly as py from plotly.graph_objs import * from getpass import getpass import numpy as np import pandas as pd df = pd.read_csv('transcount.csv') df = df.groupby('year').aggregate(np.mean) gpu = pd.read_csv('gpu_transcount.csv') gpu = gpu.groupby('year').aggregate(np.mean) df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True) df = df.replace(np.nan, 0) api_key = getpass() # Change the user to your own username py.sign_in('LearningPythonDataAnalysis', api_key) counts = np.log(df['trans_count'].values) gpu_counts = np.log(df['gpu_trans_count'].values) data = Data([Box(y=counts), Box(y=gpu_counts)]) plot_url = py.plot(data, filename='moore-law-scatter') print(plot_url)
def _sign_in(): py.sign_in('Andrew.Hearst75', 'd5R5jd7z5BqSCot4ClrL')
# If you're using unicode in your file, you may need to specify the encoding. # You can reproduce this figure in Python with the following code! # Learn about API authentication here: https://plot.ly/python/getting-started # Find your api_key here: https://plot.ly/settings/api import plotly.plotly as py from plotly.graph_objs import * import pandas as pd import numpy as np #read csv df = pd.read_csv('cars-sample.csv') py.sign_in('rtm5151', 'BBtyby2FugITT2qYi7hp') def getTrace(mfg_name,mfg_color): x=df['Weight'][df['Manufacturer'] == mfg_name] y=df['MPG'][df['Manufacturer'] == mfg_name] size=x mfg=df['Manufacturer'][df['Manufacturer'] == mfg_name] trace = { "x": x, "y": y, "marker": { "color": mfg_color, "size": size, "sizemode": "area", "sizeref": 24.53,
def plot_and_tables(excelfile,indexsheet): import xlrd import pandas as pd import plotly.plotly as py import plotly.graph_objs as pl xls = pd.ExcelFile(excelfile) book = xlrd.open_workbook(excelfile) this_sheet = book.sheet_by_index(indexsheet) nrows = int(this_sheet.cell(3, 2).value) ncols = int(this_sheet.cell(4, 2).value) indexopt = int(this_sheet.cell(7, 0).value) incluir_total_footer = int(this_sheet.cell(3, 9).value) type_graph_ind = list() trace_colors = list() for ii in range(1, ncols+1): type_graph_ind.append(int(this_sheet.cell(7, ii).value)) trace_colors.append(this_sheet.cell(8, ii).value) titulo = this_sheet.cell(2, 2).value descripcion = this_sheet.cell(5,1).value typeofgraph = int(this_sheet.cell(6, 2).value) if this_sheet.cell(3, 6).value =="a": maxvalue ="a" minvalue ="a" else: maxvalue = int(this_sheet.cell(3, 6).value) minvalue = int(this_sheet.cell(4, 6).value) if indexopt==0: data = xls.parse(indexsheet, skiprows=9,parse_cols=ncols, na_values=['NA']) else: # index_col=["none"] data = xls.parse(indexsheet, skiprows=9, parse_cols=ncols, na_values=['NA']) print(nrows) df = data[:nrows] print(df.head()) print('Llamando bibliotecas') #Plot with plotly py.sign_in("glezma", "0q6w6pozu7") print('Hecho!!') print('Procesando graficos') listdata = list() for count in range(1,ncols+1): print(type_graph_ind[count-1]) print(type_graph_ind) if type_graph_ind[count-1]==0: df.head() plot = pl.Scatter(x=df['Fecha'], y=df.ix[:,count], mode='lines+markers', marker=pl.Marker(size=8), name=df.columns[int(count)]) listdata.append(plot) print(count) layout = pl.Layout() elif type_graph_ind[count-1]==1: df.head() print(df['Fecha']) if df.ix[:,count].iloc[-1]>=0: plot = pl.Bar(x=df['Fecha'], y=df.ix[:,count], name=df.columns[int(count)],yaxis='y1', marker=pl.Marker( color=trace_colors[int(count-1)] ) ) else: plot = pl.Bar(x=df['Fecha'], y=df.ix[:,count], name=df.columns[int(count)],yaxis='y2',marker=pl.Marker( color=trace_colors[int(count-1)] )) listdata.append(plot) print(count) else: plot = pl.Scatter(x=df['Fecha'], y=df.ix[:,count], mode='lines+markers', marker=pl.Marker(size=8, color='rgba(0, 0, 0, 0.95)'), name=df.columns[int(count)],yaxis='y2') listdata.append(plot) print(count) layout = pl.Layout() if minvalue!="a": layout = pl.Layout(barmode='stack',bargap=0.6,yaxis=pl.YAxis(title='yaxis title',range=[minvalue, maxvalue]), yaxis2=pl.YAxis(title='yaxis title',side='right',overlaying='y', tickfont=pl.Font(color='rgb(1, 1, 1)'),range=[minvalue, maxvalue])) else: layout = pl.Layout() #layout = pl.Layout(barmode='stack',yaxis=pl.YAxis(title='yaxis title'),yaxis2=pl.YAxis(title='yaxis title',side='right',overlaying='y')) print('Hecho!!') pdata = pl.Data(listdata) fig = pl.Figure(data=pdata, layout=layout) print('Intentando conexion remota...') plot_url = py.plot(fig, filename='Repjs_'+ str(indexsheet), auto_open=False) plot_url = plot_url + '.embed' # plot_url = 'https://plot.ly/~glezma/271.embed' df1=df.set_index('Fecha').T summary_table = df1 .to_html() .replace('<table border="1" class="dataframe">', '<table class="display", align = "center", style="width:100%;">') # use bootstrap styling summary_table = summary_table .replace('<tr style="text-align: right;">', '<tr>') # use bootstrap styling if incluir_total_footer != 0: lastindex = df1.index.values[-1] toreplace = '''<tr>\n <th>''' + lastindex toplace = '<tfoot>\n <tr>\n <th>' + lastindex summary_table = summary_table .replace(toreplace, toplace) # use bootstrap styling toreplace ='</tbody>' toplace ='</tfoot></tbody>' summary_table = summary_table .replace(toreplace, toplace) return (summary_table, plot_url, titulo ,descripcion)
print 'maximum correlation between PC1 and nino: ', maxi print 'at lag of nino: ', maxlag maxlag, maxi = highestcorlag(pc2, nino) print 'maximum correlation between PC2 and nino: ', maxi print 'at lag of nino: ', maxlag print 'variance of the different components: ', pca.explained_variance_ratio_ #%% plot in plotly subplot with EOF and PC2 import plotly.plotly as py import plotly.graph_objs as go import plotly.tools as tls """Sign into Plotly""" py.sign_in() trace2 = go.Scatter(x=time, y=pc2, line=dict(width=3, color=('rgb(24,12,255)')), name='second PC') trace1 = { 'z': eof[:, :, 1], 'x': lon, 'y': lat, 'type': 'contour',
# -*- coding: utf-8 -*- """ Created on Tue Aug 19 01:40:03 2014 @author: fl@c@ """ import matplotlib.pyplot as plt import serial import numpy as np import os import plotly.plotly as py from plotly.graph_objs import * py.sign_in("YOUR_USER_ID", "YOUR_USER_KEY") trace1 = Scatter(x=[1, 2, 3, 4], y=[10, 15, 13, 17]) trace2 = Scatter(x=[1, 2, 3, 4], y=[16, 5, 11, 9]) data = Data([trace1, trace2]) plot_url = py.plot(data, filename='basic-line') def killOldData(): try: os.remove("spectra.dat") # remove any previous version of spectra.dat except OSError: print(" *** Could not find or delete previous spectra.dat") pass fname = 'spectra.dat' # set the file name to spectra.dat fmode = 'ab' # set the file mode to append binary lines = 0
# Learn about API authentication here: {{BASE_URL}}/python/getting-started # Find your api_key here: {{BASE_URL}}/settings/api import plotly.plotly as py from plotly.graph_objs import * py.sign_in('TestBot', 'r1neazxo9w') trace1 = Scatter(x=[1, 2, 3, 4], y=[10, 15, 13, 17]) trace2 = Scatter(x=[1, 2, 3, 4], y=[16, 5, 11, 9]) data = Data([trace1, trace2]) plot_url = py.plot(data, filename='append', auto_open=False)
import re import multiprocessing import pickle as pkl import linecache import pandas as pd import numpy as np import random from commands import getoutput import itertools import seaborn as sns from matplotlib import pyplot as plt from time import time import plotly import plotly.plotly as ptl from plotly import graph_objs as go ptl.sign_in('lthiberiol', 'm15ikp59lt') ncbi = ete3.NCBITaxa() os.chdir('/work/Alphas_and_Cyanos') named_reference_tree = ete3.Tree( 'rooted_partitions-with_named_branches.treefile', format=1) class cd: """ Context manager for changing the current working directory """ def __init__(self, newPath): self.newPath = os.path.expanduser(newPath)