def run_item_clicked(self, item): logging.info('Run item %s clicked' % item.text(0)) output = io.StringIO() if item.parent() is not None: if item.parent().text(0) == 'Variables': cpt = self._concrete_model.find_component(item.text(0)) # create ggplot df = mo.get_entity(cpt) if item.text(0) == 'S': ff = pn.ggplot(df, pn.aes('T', item.text(0))) + pn.ggtitle(cpt.doc) +\ pn.geom_step(pn.aes(color='States'), direction='hv') + pn.facet_wrap('States') elif item.text(0) == 'Q': ff = pn.ggplot(df, pn.aes('T', item.text(0))) + pn.ggtitle(cpt.doc) +\ pn.geom_step(pn.aes(color='J'), direction='hv') + pn.facet_grid('J~') else: ff = pn.ggplot(df, pn.aes('T', item.text(0))) + pn.ggtitle(cpt.doc) +\ pn.geom_step(pn.aes(color='J'), direction='hv') + pn.facet_grid('I~') size = self.canvas.size() ff += pn.theme(figure_size=(size.width() / 100, size.height() / 100)) # update to the new figure fig = ff.draw() self.canvas.figure = fig self.canvas.draw() output.close()
def test_step(): p = (ggplot(df, aes('x')) + geom_step(aes(y='y'), size=4) + geom_step(aes(y='y+2'), color='red', direction='vh', size=4)) assert p == 'step'
def test_step_mid(): df = pd.DataFrame({'x': range(9), 'y': range(9)}) p = (ggplot(df, aes('x', 'y')) + geom_point(size=4) + geom_step(direction='mid', size=2) ) assert p == 'step_mid'
def test_line(): df2 = df.copy() # geom_path plots in given order. geom_line & # geom_step sort by x before plotting df2['x'] = df['x'].values[::-1] p = (ggplot(df2, aes('x')) + geom_path(aes(y='y'), size=4) + geom_line(aes(y='y+2'), color='blue', size=4) + geom_step(aes(y='y+4'), color='red', size=4)) assert p == 'path_line_step'
sv = scale_predictors(df, predictor='SVC') # ld = scale_predictors(df, predictor='LDA') nb = scale_predictors(df, predictor='naive_bayes') rn = scale_predictors(df, predictor='Random') ac = scale_predictors(df, predictor='acg_ip_risk') rf = scale_predictors(df, predictor='RandmForest') ct = scale_predictors(df, predictor='cheating') df2 = pd.concat([nb, rn, ac, rf, sv, ct]) # df2 = pd.concat([nb, rn, ac, rf, ct]) print(df2.head(20)) print(df2.describe()) p = pn.ggplot(df2, pn.aes(x='num_examined', y='num_detected', group='classifier', colour='classifier')) +\ pn.geom_step() +\ pn.ggtitle("How Many ppl would we need to intervene on to prevent Y hospitalizations?") # pn.scales.scale_x_reverse() p.save(HOME_DIR + 'all_together_d.png', height=8, width=10, units='in', verbose=False) p2 = pn.ggplot(df2, pn.aes(x='num_examined', y='num_detected', group='classifier', colour='classifier')) +\ pn.geom_step() +\ pn.ggtitle("How Many ppl would we need to intervene on to prevent Y hospitalizations?") +\ pn.xlim(0, 300) + pn.ylim(0, 300) # pn.scales.scale_x_reverse() p2.save(HOME_DIR + 'all_together_trunc.png', height=8, width=10, units='in', verbose=False) print("Finished!")