def run_ne_workflow(global_variables, biotype): print "-" * len(list(biotype)) print biotype print "-" * len(list(biotype)) print # gets the config for the workflow config = global_variables["config"]["NE"] # gets the outpath for the workflow - as we use this a lot out_path = os.path.join(global_variables["out_path"], biotype, "ne_workflow") for element in config: element_name, element_active, element_type, element_subtype, element_path = element if check_element_prerequisites(element_active, element_type, element_subtype, element_path, global_variables): # methods for the core workflow if element_name == "ne_sub_directories_core" and element_type == "core": core_sub_directories(global_variables, out_path) elif element_name == "ne_file_matrix_annotated" and element_type == "core": ne_matrix_annotated(global_variables, out_path, biotype) elif element_name == "ne_file_matrix_IDs" and element_type == "core": ne_matrix_IDs(global_variables, out_path, biotype) elif element_name == "ne_file_matrix_symbols" and element_type == "core": ne_matrix_symbols(global_variables, out_path, biotype) elif element_name == "ne_file_gene_IDs" and element_type == "core": ne_gene_IDs(global_variables, out_path, biotype) elif element_name == "ne_file_gene_symbols" and element_type == "core": ne_gene_symbols(global_variables, out_path, biotype) # methods for statistical analysis # methods for the plots elif element_name == "ne_start_plots" and element_type == "plot_core": pr_dictionary = start_plots(global_variables, out_path, "ne", None) elif element_type == "plot": add_plot(element_path, pr_dictionary) elif element_name == "ne_end_plots" and element_type == "plot_core": end_plots(pr_dictionary) elif element_name == "ne_run_r" and element_type == "plot_core": run_r(pr_dictionary) # methods for the report elif element_name == "ne_start_report" and element_type == "report_core": start_report(global_variables, pr_dictionary, element_path) elif element_type == "report_title": add_header_section_to_report(element_path, pr_dictionary) elif element_type == "report_text": add_text_section_to_report(element_path, pr_dictionary, global_variables) elif element_type == "report_plot": add_plot_section_to_report(element_path, pr_dictionary, global_variables) elif element_name == "ne_end_report" and element_type == "report_core": end_report(pr_dictionary) print "done with: " + element_name.replace("_", " ") print
def run_mde_workflow(global_variables, biotype): print "-" * len(list(biotype)) print biotype print "-" * len(list(biotype)) print # gets the config for the workflow config = global_variables["config"]["MDE"] # iterates through the des parsed_mde_parameters = global_variables["mde_parameters"] for mde_dict in parsed_mde_parameters: mde_ID = mde_dict["mde_ID"] de_IDs = mde_dict["de_IDs"] print mde_ID # gets the outpath for the workflow - as we use this a lot out_path = os.path.join(global_variables["out_path"], biotype, "mde_workflows", mde_ID) for element in config: element_name, element_active, element_type, element_subtype, element_path = element # checks prerequisites have been met: if check_element_prerequisites(element_active, element_type, element_subtype, element_path, global_variables): # methods for the core workflow if element_name == "mde_sub_directories_core" and element_type == "core": core_sub_directories(global_variables, out_path) elif element_name == "mde_file_all_genes_IDs" and element_type == "core": Mde_IDs(global_variables, out_path, biotype, de_IDs) elif element_name == "mde_file_genes_significant_in_any_comparison_IDs" and element_type == "core": Mde_any_significant_IDs(global_variables, out_path, biotype, de_IDs) elif element_name == "mde_file_genes_significant_in_all_comparisons_IDs" and element_type == "core": Mde_all_significant_IDs(global_variables, out_path, biotype, de_IDs) elif element_name == "mde_file_all_genes_symbols" and element_type == "core": Mde_symbols(global_variables, out_path, biotype, de_IDs) elif element_name == "mde_file_genes_significant_in_any_comparison_symbols" and element_type == "core": Mde_any_significant_symbols(global_variables, out_path, biotype, de_IDs) elif element_name == "mde_file_genes_significant_in_all_comparisons_symbols" and element_type == "core": Mde_all_significant_symbols(global_variables, out_path, biotype, de_IDs) elif element_name == "mde_file_all_genes_annotated" and element_type == "core": Mde_annotated(global_variables, out_path, biotype, de_IDs) elif element_name == "mde_file_genes_significant_in_any_comparison_annotated" and element_type == "core": Mde_any_significant_annotated(global_variables, out_path, biotype, de_IDs) elif element_name == "mde_file_genes_significant_in_all_comparisons_annotated" and element_type == "core": Mde_all_significant_annotated(global_variables, out_path, biotype, de_IDs) # methods for statistical analysis elif element_name == "mde_analysis_pairwise_overlap" and element_type == "statistical": pairwise_overlap_helper(out_path, de_IDs) elif element_name == "mde_differential_expression_signature" and element_type == "statistical": mde_dict = differential_expression_signature_helper( global_variables, out_path, de_IDs, mde_dict) # methods for the plots elif element_name == "mde_start_plots" and element_type == "plot_core": pr_dictionary = start_plots(global_variables, out_path, "Mde", mde_dict) elif element_type == "plot": add_plot(element_path, pr_dictionary) elif element_name == "mde_end_plots" and element_type == "plot_core": end_plots(pr_dictionary) elif element_name == "mde_run_r" and element_type == "plot_core": run_r(pr_dictionary) # methods for the report elif element_name == "mde_start_report" and element_type == "report_core": start_report(global_variables, pr_dictionary, element_path) elif element_type == "report_title": add_header_section_to_report(element_path, pr_dictionary) elif element_type == "report_text": add_text_section_to_report(element_path, pr_dictionary, global_variables) elif element_type == "report_plot": add_plot_section_to_report(element_path, pr_dictionary, global_variables) elif element_name == "mde_end_report" and element_type == "report_core": end_report(pr_dictionary) print "done with: " + element_name.replace("_", " ") print
def run_pde_workflow(global_variables, biotype): print "-" * len(list(biotype)) print biotype print "-" * len(list(biotype)) print # gets the config for the workflow config = global_variables["config"]["PDE"] # iterates through the PDEs parsed_pde_parameters = global_variables["pde_parameters"] for pde_parameter_dict in parsed_pde_parameters: pde_ID = pde_parameter_dict["pde_ID"] print pde_ID pde_ID_no_spaces = pde_ID.replace(" ", "_") # gets the outpath for the workflow - as we use this a lot out_path = os.path.join(global_variables["out_path"], biotype, "pde_workflows", pde_ID_no_spaces) # iterates through the elements in the config for element in config: element_name, element_active, element_type, element_subtype, element_path = element # checks prerequisites have been met: if check_element_prerequisites(element_active, element_type, element_subtype, element_path, global_variables): # methods for the core workflow if element_name == "pde_sub_directories_core" and element_type == "core": core_sub_directories(global_variables, out_path) elif element_name == "pde_file_gene_IDs" and element_type == "core": gene_IDs(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_IDs_upregulated" and element_type == "core": gene_IDs_upregulated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_IDs_downregulated" and element_type == "core": gene_IDs_downregulated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_IDs_significant" and element_type == "core": gene_IDs_significant(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_IDs_significant_upregulated" and element_type == "core": gene_IDs_significant_upregulated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_IDs_significant_downregulated" and element_type == "core": gene_IDs_significant_downregulated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_symbols" and element_type == "core": gene_symbols(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_symbols_upregulated" and element_type == "core": gene_symbols_upregulated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_symbols_downregulated" and element_type == "core": gene_symbols_downregulated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_symbols_significant" and element_type == "core": gene_symbols_significant(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_symbols_significant_upregulated" and element_type == "core": gene_symbols_significant_upregulated( global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_gene_symbols_significant_downregulated" and element_type == "core": gene_symbols_significant_downregulated( global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_annotated" and element_type == "core": PDE_annotated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_annotated_upregulated" and element_type == "core": PDE_annotated_upregulated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_annotated_downregulated" and element_type == "core": PDE_annotated_downregulated(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_annotated_significant" and element_type == "core": PDE_annotated_significant(global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_annotated_significant_upregulated" and element_type == "core": PDE_annotated_significant_upregulated( global_variables, out_path, biotype, pde_ID) elif element_name == "pde_file_annotated_significant_downregulated" and element_type == "core": PDE_annotated_significant_downregulated( global_variables, out_path, biotype, pde_ID) # methods for statistical analysis elif element_name == "pde_analysis_spatial" and element_type == "statistical": spatial_enrichment_helper(global_variables, out_path, pde_parameter_dict) elif element_name == "pde_analysis_hypergeometric_gene_sets" and element_type == "statistical": hypergeometric_gene_set_helper(out_path, global_variables) elif element_name == "pde_analysis_ipa_upstream_regulators" and element_type == "statistical": ipa_ureg_helper(out_path, global_variables) # methods for the plots elif element_name == "pde_start_plots" and element_type == "plot_core": pr_dictionary = start_plots(global_variables, out_path, "PDE", pde_parameter_dict) elif element_type == "plot": add_plot(element_path, pr_dictionary) elif element_name == "pde_end_plots" and element_type == "plot_core": end_plots(pr_dictionary) elif element_name == "pde_run_r" and element_type == "plot_core": run_r(pr_dictionary) # methods for the report elif element_name == "pde_start_report" and element_type == "report_core": start_report(global_variables, pr_dictionary, element_path) elif element_type == "report_title": add_header_section_to_report(element_path, pr_dictionary) elif element_type == "report_text": add_text_section_to_report(element_path, pr_dictionary, global_variables) elif element_type == "report_plot": add_plot_section_to_report(element_path, pr_dictionary, global_variables) elif element_name == "pde_end_report" and element_type == "report_core": end_report(pr_dictionary) print "done with: " + element_name.replace("_", " ") print