def main(_offset_y=0.5): _correlations_array, _saturation_array = compute_fiber_densities(_offset_y) # plot _fig = go.Figure(data=go.Scatter(x=_saturation_array, y=_correlations_array, mode='markers', marker={ 'size': 10, 'color': '#ea8500' }, showlegend=False), layout={ 'xaxis': { 'title': 'End mean saturation fraction', 'zeroline': False, 'range': [-0.01, 0.1], 'tickmode': 'array', 'tickvals': [0, 0.05, 0.1] }, 'yaxis': { 'title': 'Inner windows correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_offset_y_' + str(_offset_y))
def main(_real_cells=True, _static=False, _band=True, _high_temporal_resolution=False): _z_array = np.zeros(shape=(len(BY), len(BY))) for (_padding_index, _padding_by), (_space_index, _space_by) in product(enumerate(BY), enumerate(BY)): print('Padding by: ', _padding_by, ', space by: ', _space_by) _same_correlations_array, _different_correlations_array = \ same_inner_correlation_vs_different_inner_correlation.compute_fiber_densities( _real_cells=_real_cells, _static=_static, _band=_band, _high_temporal_resolution=_high_temporal_resolution, _padding_y_by=_padding_by, _padding_z_by=_padding_by, _space_y_by=_space_by, _space_z_by=_space_by ) _same_minus_different = np.array(_same_correlations_array) - np.array( _different_correlations_array) _same_greater_than_different = (_same_minus_different > 0).sum() / len(_same_minus_different) _z_array[_space_index, _padding_index] = _same_greater_than_different # plot _colors_array = ['black', 'white', config.colors(1)] _fig = go.Figure(data=go.Heatmap( x=BY, y=BY, z=_z_array, colorscale=sns.color_palette(_colors_array).as_hex(), colorbar={ 'tickmode': 'array', 'tickvals': [0.5, 0.75, 1], 'ticktext': ['0.5', 'Same > different', '1'], 'tickangle': -90 }, showscale=True, zmin=0.5, zmax=1), layout={ 'xaxis': { 'title': 'Border size (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1, 1.5, 2] }, 'yaxis': { 'title': 'Space from window (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1, 1.5, 2] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_real_' + str(_real_cells) + '_static_' + str(_static) + '_band_' + str(_band) + '_high_time_' + str(_high_temporal_resolution))
def main(_band=True, _high_temporal_resolution=False): print('Computing fiber densities vs. offsets in axes:') _fiber_densities_z_array = inner_density_vs_offsets_in_axes.compute_z_array( _band=_band, _high_temporal_resolution=_high_temporal_resolution) print('Computing fiber density changes vs. offsets in axes:') _fiber_density_changes_z_array = inner_density_change_vs_offsets_in_axes.compute_z_array( _band=_band, _high_temporal_resolution=_high_temporal_resolution) _z_array = _fiber_density_changes_z_array / _fiber_densities_z_array # plot _offsets_y = np.arange(start=OFFSET_Y_START, stop=OFFSET_Y_END + OFFSET_Y_STEP, step=OFFSET_Y_STEP) _offsets_z = np.arange(start=OFFSET_Z_START, stop=OFFSET_Z_END + OFFSET_Z_STEP, step=OFFSET_Z_STEP) _colors_array = ['white', config.colors(1)] _fig = go.Figure(data=go.Heatmap( x=_offsets_z, y=_offsets_y, z=_z_array, colorscale=sns.color_palette(_colors_array).as_hex(), colorbar={ 'tickmode': 'array', 'tickvals': [0, 0.25, 0.5], 'ticktext': ['0.0', 'Z-score change / z-score', '0.5'], 'tickangle': -90 }, showscale=True, zmin=-0, zmax=0.5), layout={ 'xaxis': { 'title': 'Offset in XY axis (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [-4, -2, 0, 2, 4] }, 'yaxis': { 'title': 'Offset in Z axis (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [-1, 0, 1, 2] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_high_time_' + str(_high_temporal_resolution) + '_band_' + str(_band))
def main(_high_temporal_resolution=False): _y_arrays = [[], []] for _band_index, _band in enumerate([True, False]): print('Band:', _band) _same_correlations_array, _different_correlations_array = \ same_inner_correlation_vs_different_inner_correlation.compute_fiber_densities(_band=_band, _high_temporal_resolution=_high_temporal_resolution) for _same, _different in zip(_same_correlations_array, _different_correlations_array): _point_distance = compute_lib.distance_from_a_point_to_a_line( _line=[-1, -1, 1, 1], _point=[_same, _different] ) if _same > _different: _y_arrays[_band_index].append(_point_distance) else: _y_arrays[_band_index].append(-_point_distance) # plot _colors_array = config.colors(2) _names_array = ['Band', 'No Band'] _fig = go.Figure( data=[ go.Box( y=_y_array, name=_name, boxpoints=False, line={ 'width': 1, 'color': _color }, showlegend=False ) for _y_array, _name, _color in zip(_y_arrays, _names_array, _colors_array) ], layout={ 'xaxis': { 'zeroline': False }, 'yaxis': { 'title': 'Same minus different correlation', 'zeroline': False } } ) save.to_html( _fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_high_temporal_res_' + str(_high_temporal_resolution) )
def main(): print('Computing fiber vs. offsets in axes:') _fiber_z_array = inner_density_vs_offsets_in_axes.compute_z_array( _offset_y_start=OFFSET_Y_START, _offset_y_end=OFFSET_Y_END, _offset_z_start=OFFSET_Z_START, _offset_z_end=OFFSET_Z_END).flatten() print('Computing "same vs. different" vs. offset in axes:') _same_vs_different_z_array = \ same_inner_correlation_vs_different_inner_correlation_offsets_in_axes.compute_z_array( _offset_y_start=OFFSET_Y_START, _offset_y_end=OFFSET_Y_END, _offset_z_start=OFFSET_Z_START, _offset_z_end=OFFSET_Z_END).flatten() print( 'Correlation:', compute_lib.correlation(_fiber_z_array, _same_vs_different_z_array, _with_p_value=True)) # plot _fig = go.Figure(data=go.Scatter(x=_fiber_z_array, y=_same_vs_different_z_array, mode='markers', marker={ 'size': 5, 'color': '#ea8500' }, showlegend=False), layout={ 'xaxis': { 'title': 'Fiber density (z-score)', 'zeroline': False }, 'yaxis': { 'title': '"same" > "different" (%)', 'zeroline': False } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot')
def main(_band=True, _high_temporal_resolution=False): _distances_from_y_equal_x, _z_positions_array = compute_fiber_densities( _band, _high_temporal_resolution) _min_z_position, _max_z_position = min(_z_positions_array), max( _z_positions_array) _z_positions_array_normalized = [ (_z_position_value - _min_z_position) / (_max_z_position - _min_z_position) for _z_position_value in _z_positions_array ] # plot _fig = go.Figure(data=go.Scatter(x=_z_positions_array_normalized, y=_distances_from_y_equal_x, mode='markers', marker={ 'size': 5, 'color': '#ea8500' }, showlegend=False), layout={ 'xaxis': { 'title': 'Normalized mean Z distance', 'zeroline': False, 'range': [-0.1, 1.2], 'tickmode': 'array', 'tickvals': [0, 0.5, 1] }, 'yaxis': { 'title': 'Distance from y = x', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_band_' + str(_band) + '_high_temporal_res_' + str(_high_temporal_resolution))
def main(_early_time_frames=True): _experiments = all_experiments() _experiments = filtering.by_categories(_experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=False, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_pair_distance_range(_tuples, PAIR_DISTANCE_RANGE) _tuples = filtering.by_real_pairs(_tuples) _tuples = filtering.by_band(_tuples) print('Total tuples:', len(_tuples)) _arguments = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': OFFSET_Y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside' }) _windows_dictionary, _windows_to_compute = compute.windows( _arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _fiber_densities = compute.fiber_densities(_windows_to_compute) _heatmap_fiber = [] _heatmap_fiber_change = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple _series_normalization = load.normalization_series_file_data( _experiment, _series_id) for _cell_id in ['left_cell', 'right_cell']: _fiber_densities_by_time = [ _fiber_densities[_tuple] for _tuple in _windows_dictionary[(_experiment, _series_id, _group, _cell_id)] ] _cell_fiber_densities = \ _fiber_densities_by_time[TIME_FRAMES[OFFSET_Y]['early'][0] if _early_time_frames else TIME_FRAMES[OFFSET_Y]['late'][0]: TIME_FRAMES[OFFSET_Y]['early'][1] if _early_time_frames else TIME_FRAMES[OFFSET_Y]['late'][1]] _properties = load.group_properties(_experiment, _series_id, _group) _cell_fiber_densities = compute.remove_blacklist( _experiment, _series_id, _properties['cells_ids'][_cell_id], _cell_fiber_densities) _cell_fiber_densities = compute.longest_fiber_densities_ascending_sequence( _cell_fiber_densities) # fix if found nan if True in np.isnan(_cell_fiber_densities): _cell_fiber_densities = _cell_fiber_densities[:np.where( np.isnan(_cell_fiber_densities))[0][0]] # not enough data if len(_cell_fiber_densities) < DERIVATIVE + 1: continue _z_score_fiber_density = libs.compute_lib.z_score_array( _array=_cell_fiber_densities, _average=_series_normalization['average'], _std=_series_normalization['std']) if _experiment in ['SN41', 'SN44']: for _start_index in [0, 1, 2]: _heatmap_fiber += _z_score_fiber_density[_start_index::3][ DERIVATIVE:] _heatmap_fiber_change += compute_lib.derivative( _z_score_fiber_density[_start_index::3], _n=DERIVATIVE) else: _heatmap_fiber += _z_score_fiber_density[DERIVATIVE:] _heatmap_fiber_change += compute_lib.derivative( _z_score_fiber_density, _n=DERIVATIVE) print( compute_lib.correlation(_heatmap_fiber, _heatmap_fiber_change, _with_p_value=True)) if PLOT: _y_shape = int(round((Y_LABELS_END - Y_LABELS_START) * Y_BINS)) _x_shape = int(round((X_LABELS_END - X_LABELS_START) * X_BINS)) _total_points = 0 _z_array = np.zeros(shape=(_y_shape, _x_shape)) for _y, _x in zip(_heatmap_fiber_change, _heatmap_fiber): _y_rounded, _x_rounded = int(round(_y * Y_BINS)), int( round(_x * X_BINS)) _y_index, _x_index = int(_y_rounded - Y_LABELS_START * Y_BINS), int(_x_rounded - X_LABELS_START * X_BINS) if 0 <= _y_index < _z_array.shape[ 0] and 0 <= _x_index < _z_array.shape[1]: _z_array[_y_index][_x_index] += 1 _total_points += 1 _z_array = _z_array / _total_points if not CONDITIONAL_NORMALIZATION: _z_array[_z_array == 0] = None else: _z_array_plot = np.zeros(shape=np.array(_z_array).shape) for _fiber_index, _fiber_density_z_score in enumerate(_z_array): _sum = np.sum(_fiber_density_z_score) for _change_index, _change_z_score in enumerate( _fiber_density_z_score): _z_array_plot[_fiber_index][_change_index] = ( _change_z_score / _sum) if _sum != 0 else 0 _z_array_plot[_z_array_plot == 0] = None _fig = go.Figure( data=go.Heatmap(x=np.arange(start=X_LABELS_START, stop=X_LABELS_END, step=1 / X_BINS), y=np.arange(start=Y_LABELS_START, stop=Y_LABELS_END, step=1 / Y_BINS), z=_z_array, colorscale='Viridis', colorbar={ 'tickmode': 'array', 'tickvals': [0, 0.025, 0.05], 'ticktext': ['0', 'Fraction', '0.05'], 'tickangle': -90 }, zmin=Z_MIN, zmax=Z_MAX[CONDITIONAL_NORMALIZATION]), layout={ 'xaxis': { 'title': 'Fiber densities z-score', 'zeroline': False }, 'yaxis': { 'title': 'Change in fiber<br>density (z-score)', 'zeroline': False }, 'shapes': [{ 'type': 'line', 'x0': X_LABELS_START, 'y0': Y_LABELS_START, 'x1': X_LABELS_END, 'y1': Y_LABELS_START, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': X_LABELS_START, 'y0': Y_LABELS_START, 'x1': X_LABELS_START, 'y1': Y_LABELS_END, 'line': { 'color': 'black', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_early_' + str(_early_time_frames))
def main(): print('Regular experiments') _experiments = all_experiments() _experiments = filtering.by_categories(_experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=False, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_bleb_from_start(_experiments, _from_start=False) _regular_experiments, _regular_offsets_x = compute_fiber(_tuples) print('Bleb experiments') _experiments = all_experiments() _experiments = filtering.by_categories(_experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=False, _is_bleb=True, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_bleb_from_start(_experiments, _from_start=True) _bleb_experiments_real, _bleb_experiments_fake, _bleb_offsets_x = compute_matched_fiber( _tuples) print('\nWindow distance (cell diameter)', 'Regular # of cells', 'Regular Wilcoxon p-value', 'Bleb # of cells', 'Bleb "real" Wilcoxon p-value', 'Bleb "fake" Wilcoxon p-value', sep='\t') for _offset_x, _regular_experiment, _bleb_experiment_real, _bleb_experiment_fake in \ zip(_regular_offsets_x, _regular_experiments, _bleb_experiments_real, _bleb_experiments_fake): print(round(_offset_x, 2), len(_regular_experiment), wilcoxon(_regular_experiment)[1], len(_bleb_experiment_real), wilcoxon(_bleb_experiment_real)[1], wilcoxon(_bleb_experiment_fake)[1], sep='\t') # bleb real vs. fake print('\nBleb real vs. fake wilcoxon') print('Window distance (cell diameter)', 'Wilcoxon p-value', sep='\t') for _offset_x, _bleb_experiment_real, _bleb_experiment_fake in \ zip(_bleb_offsets_x, _bleb_experiments_real, _bleb_experiments_fake): print(round(_offset_x, 2), wilcoxon(_bleb_experiment_real, _bleb_experiment_fake)[1], sep='\t') # plot regular vs. bleb _fig = go.Figure(data=[ go.Scatter(x=_regular_offsets_x, y=[np.mean(_array) for _array in _regular_experiments], name='No bleb', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _regular_experiments], 'thickness': 1, 'color': '#005b96' }, mode='markers', marker={ 'size': 15, 'color': '#005b96' }, opacity=0.7), go.Scatter(x=_bleb_offsets_x, y=[np.mean(_array) for _array in _bleb_experiments_real], name='Bleb', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _bleb_experiments_real], 'thickness': 1, 'color': '#ea8500' }, mode='markers', marker={ 'size': 15, 'color': '#ea8500' }, opacity=0.7) ], layout={ 'xaxis': { 'title': 'Window distance (cell diameter)', 'zeroline': False }, 'yaxis': { 'title': 'Fiber density (z-score)', 'range': [-1.7, 13], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 4, 8, 12] }, 'legend': { 'xanchor': 'right', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2 }, 'shapes': [{ 'type': 'line', 'x0': -0.2, 'y0': -1.5, 'x1': 3.4, 'y1': -1.5, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -0.2, 'y0': -1.5, 'x1': -0.2, 'y1': 13, 'line': { 'color': 'black', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_regular_vs_bleb') # plot bleb real vs. bleb fake _fig = go.Figure(data=[ go.Scatter(x=_regular_offsets_x, y=[np.mean(_array) for _array in _bleb_experiments_real], name='Bleb real', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _bleb_experiments_real], 'thickness': 1, 'color': '#005b96' }, mode='markers', marker={ 'size': 15, 'color': '#005b96' }, opacity=0.7), go.Scatter(x=_bleb_offsets_x, y=[np.mean(_array) for _array in _bleb_experiments_fake], name='Bleb fake', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _bleb_experiments_fake], 'thickness': 1, 'color': '#ea8500' }, mode='markers', marker={ 'size': 15, 'color': '#ea8500' }, opacity=0.7) ], layout={ 'xaxis': { 'title': 'Window distance (cell diameter)', 'zeroline': False }, 'yaxis': { 'title': 'Fiber density (z-score)', 'range': [-0.5, 1.5], 'zeroline': False, 'tickmode': 'array', 'tickvals': [-0.5, 0, 0.5, 1] }, 'legend': { 'xanchor': 'right', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2 }, 'shapes': [{ 'type': 'line', 'x0': -0.2, 'y0': -0.45, 'x1': 3.4, 'y1': -0.45, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -0.2, 'y0': -0.45, 'x1': -0.2, 'y1': 1.5, 'line': { 'color': 'black', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_bleb_real_vs_fake')
def main(_real_cells=True, _static=False, _dead_dead=False, _live_dead=False, _dead=False, _live=False, _bead=False, _metastasis=False, _bleb=False, _bleb_amount_um=None, _band=True, _high_temporal_resolution=False, _offset_y=0.5): _experiments = all_experiments() _experiments = filtering.by_categories( _experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=_high_temporal_resolution, _is_bleb=_bleb, _is_dead_dead=_dead_dead, _is_live_dead=_live_dead, _is_bead=_bead, _is_metastasis=_metastasis) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_pair_distance_range(_tuples, PAIR_DISTANCE_RANGE) _tuples = filtering.by_real_pairs(_tuples, _real_pairs=_real_cells) _tuples = filtering.by_fake_static_pairs(_tuples, _fake_static_pairs=_static) if _dead_dead is not False or _live_dead is not False: _tuples = filtering.by_dead_live(_tuples, _dead=_dead, _live=_live) _tuples = filtering.by_band(_tuples, _band=_band) if _bleb: _tuples = filtering.by_bleb_amount_um(_tuples, _amount_um=_bleb_amount_um) print('Total tuples:', len(_tuples)) _arguments = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple _latest_time_frame = compute.latest_time_frame_before_overlapping( _experiment, _series_id, _group, OFFSET_X) for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': _offset_y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_points': _latest_time_frame }) _windows_dictionary, _windows_to_compute = compute.windows( _arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _fiber_densities = compute.fiber_densities(_windows_to_compute, _subtract_border=True) _experiments_fiber_densities = { _key: [_fiber_densities[_tuple] for _tuple in _windows_dictionary[_key]] for _key in _windows_dictionary } _tuples_by_experiment = organize.by_experiment(_tuples) _n = 0 _cells_ranks = [] for _experiment in _tuples_by_experiment: print('Experiment:', _experiment) _experiment_tuples = _tuples_by_experiment[_experiment] for _pivot_tuple in tqdm(_experiment_tuples, desc='Main loop'): _pivot_experiment, _pivot_series_id, _pivot_group = _pivot_tuple _pivot_experiment_properties = load.group_properties( _pivot_experiment, _pivot_series_id, _pivot_group) for _pivot_cell_id, _pivot_cell_correct_match_cell_id in \ zip(['left_cell', 'right_cell'], ['right_cell', 'left_cell']): _pivot_cell = (_pivot_experiment, _pivot_series_id, _pivot_group, _pivot_cell_id) _pivot_cell_correct_match_cell = ( _pivot_experiment, _pivot_series_id, _pivot_group, _pivot_cell_correct_match_cell_id) _pivot_cell_fiber_densities = _experiments_fiber_densities[ _pivot_cell] _pivot_cell_fiber_densities = compute.remove_blacklist( _pivot_experiment, _pivot_series_id, _pivot_experiment_properties['cells_ids'][_pivot_cell_id], _pivot_cell_fiber_densities) _pivot_cell_correlations = [] # correct match _pivot_cell_correct_match_fiber_densities = _experiments_fiber_densities[ _pivot_cell_correct_match_cell] _pivot_cell_correct_match_fiber_densities = compute.remove_blacklist( _pivot_experiment, _pivot_series_id, _pivot_experiment_properties['cells_ids'] [_pivot_cell_correct_match_cell_id], _pivot_cell_correct_match_fiber_densities) _pivot_cell_fiber_densities_filtered, _pivot_cell_correct_match_fiber_densities_filtered = \ compute.longest_same_indices_shared_in_borders_sub_array( _pivot_cell_fiber_densities, _pivot_cell_correct_match_fiber_densities ) # ignore small arrays if len(_pivot_cell_fiber_densities_filtered ) < compute.minimum_time_frames_for_correlation( _pivot_experiment): continue _correlation = compute_lib.correlation( compute_lib.derivative( _pivot_cell_fiber_densities_filtered, _n=DERIVATIVE), compute_lib.derivative( _pivot_cell_correct_match_fiber_densities_filtered, _n=DERIVATIVE)) _pivot_cell_correlations.append(_correlation) _pivot_cell_correct_match_correlation = _correlation # create list of potential cells _candidate_tuples = [] for _candidate_tuple in _experiment_tuples: _candidate_experiment, _candidate_series_id, _candidate_group = _candidate_tuple for _candidate_cell_id in ['left_cell', 'right_cell']: _candidate_cell = (_candidate_experiment, _candidate_series_id, _candidate_group, _candidate_cell_id) # skip if same cell or correct match if _candidate_cell == _pivot_cell or _candidate_cell == _pivot_cell_correct_match_cell: continue _candidate_tuples.append(_candidate_cell) # compare with each potential candidate, until reached the maximum or nothing to compare with while len(_pivot_cell_correlations ) < POTENTIAL_MATCHES and len(_candidate_tuples) > 0: # sample randomly _candidate_cell = random.choice(_candidate_tuples) _candidate_experiment, _candidate_series_id, _candidate_group, _candidate_cell_id = _candidate_cell _candidate_experiment_properties = load.group_properties( _candidate_experiment, _candidate_series_id, _candidate_group) _candidate_cell_fiber_densities = _experiments_fiber_densities[ _candidate_cell] _candidate_cell_fiber_densities = compute.remove_blacklist( _candidate_experiment, _candidate_series_id, _candidate_experiment_properties['cells_ids'] [_candidate_cell_id], _candidate_cell_fiber_densities) _pivot_cell_fiber_densities_filtered, _candidate_cell_fiber_densities_filtered = \ compute.longest_same_indices_shared_in_borders_sub_array( _pivot_cell_fiber_densities, _candidate_cell_fiber_densities ) # ignore small arrays if len(_pivot_cell_fiber_densities_filtered ) < compute.minimum_time_frames_for_correlation( _pivot_experiment): _candidate_tuples.remove(_candidate_cell) continue _correlation = compute_lib.correlation( compute_lib.derivative( _pivot_cell_fiber_densities_filtered, _n=DERIVATIVE), compute_lib.derivative( _candidate_cell_fiber_densities_filtered, _n=DERIVATIVE)) _pivot_cell_correlations.append(_correlation) # nothing to compare with if len(_pivot_cell_correlations) == 1: continue # check matchmaking _pivot_cell_correct_match_rank = 1 for _potential_match_correlation in sorted( _pivot_cell_correlations, reverse=True): if _pivot_cell_correct_match_correlation == _potential_match_correlation: break _pivot_cell_correct_match_rank += 1 _n += 1 _cells_ranks.append(_pivot_cell_correct_match_rank) # results _correct_match_probability = 1 / POTENTIAL_MATCHES _first_place_correct_matches = sum( [1 for _rank in _cells_ranks if _rank == 1]) _first_place_fraction = _first_place_correct_matches / _n print('Matchmaking results:') print('Total cells:', _n) print('Correct match probability:', round(_correct_match_probability, 2)) print('Fraction of first place correct matches:', round(_first_place_fraction, 2)) # plot _x = list(range(MAX_RANK)) _x_text = [str(_rank + 1) for _rank in _x[:-1]] + [str(MAX_RANK) + '+'] _ranks_sums = [0 for _rank in _x] for _rank in _cells_ranks: if _rank < MAX_RANK: _ranks_sums[_rank - 1] += 1 else: _ranks_sums[-1] += 1 _y = np.array(_ranks_sums) / _n _fig = go.Figure(data=go.Bar(x=_x, y=_y, marker={'color': '#ea8500'}), layout={ 'xaxis': { 'title': 'Correct match correlation rank', 'zeroline': False, 'tickmode': 'array', 'tickvals': _x, 'ticktext': _x_text }, 'yaxis': { 'title': 'Fraction', 'range': [0, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_real_' + str(_real_cells) + '_static_' + str(_static) + '_dead_dead_' + str(_dead_dead) + '_live_dead_' + str(_live_dead) + '_dead_' + str(_dead) + '_live_' + str(_live) + '_bead_' + str(_bead) + '_metastasis_' + str(_metastasis) + '_bleb_' + str(_bleb) + str(_bleb_amount_um) + '_band_' + str(_band) + '_high_time_' + str(_high_temporal_resolution) + '_y_' + str(_offset_y)) # correct match probability plot _y = [_correct_match_probability] * (MAX_RANK - 1) + [ _correct_match_probability * (POTENTIAL_MATCHES - MAX_RANK + 1) ] _fig = go.Figure(data=go.Bar(x=_x, y=_y, marker={'color': '#ea8500'}), layout={ 'xaxis': { 'title': 'Correct match correlation rank', 'zeroline': False, 'tickmode': 'array', 'tickvals': _x, 'ticktext': _x_text }, 'yaxis': { 'title': 'Fraction', 'range': [0, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_real_' + str(_real_cells) + '_static_' + str(_static) + '_dead_dead_' + str(_dead_dead) + '_live_dead_' + str(_live_dead) + '_dead_' + str(_dead) + '_live_' + str(_live) + '_bead_' + str(_bead) + '_metastasis_' + str(_metastasis) + '_bleb_' + str(_bleb) + str(_bleb_amount_um) + '_band_' + str(_band) + '_high_time_' + str(_high_temporal_resolution) + '_y_' + str(_offset_y) + '_correct_match_prob')
def main(_band=True, _high_temporal_resolution=True, _plots=None, _plot_types=None): if _plots is None: _plots = ['same', 'different'] if _plot_types is None: _plot_types = ['scatter', 'box', 'bar'] _same_correlation_vs_time_lag, _same_time_lags_arrays, _different_time_lags_arrays, _same_time_lags_highest, \ _different_time_lags_highest = compute_fiber_densities(_band, _high_temporal_resolution) if _plots is not None: # individual plots if 'scatter' in _plot_types: for _same_tuple in _same_correlation_vs_time_lag: _experiment, _series_id, _group = _same_tuple _temporal_resolution = compute.temporal_resolution_in_minutes( _experiment) _fig = go.Figure( data=go.Scatter( x=np.array(TIME_LAGS[_high_temporal_resolution]) * _temporal_resolution, y=_same_correlation_vs_time_lag[_same_tuple], mode='markers', marker={ 'size': 25, 'color': '#ea8500' }), layout={ 'xaxis': { 'title': 'Time lag (minutes)', 'zeroline': False, 'tickmode': 'array', 'tickvals': np.array(TIME_LAGS[_high_temporal_resolution]) * _temporal_resolution }, 'yaxis': { 'title': 'Correlation', 'range': [-1, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_' + _experiment + '_' + str(_series_id) + '_' + _group) # box plots if 'box' in _plot_types: for _name, _arrays in zip( ['same', 'different'], [_same_time_lags_arrays, _different_time_lags_arrays]): if _name in _plots: _fig = go.Figure( data=[ go.Box(y=_y, name=_time_lag * 5 if _high_temporal_resolution else 15, boxpoints=False, line={'width': 1}, marker={ 'size': 10, 'color': '#ea8500' }, showlegend=False) for _y, _time_lag in zip( _arrays, TIME_LAGS[_high_temporal_resolution]) ], layout={ 'xaxis': { 'title': 'Time lag (minutes)', 'zeroline': False, 'tickmode': 'array', 'tickvals': np.array(TIME_LAGS[_high_temporal_resolution]) * 5 if _high_temporal_resolution else 15 }, 'yaxis': { 'title': 'Inner correlation' if _name == 'same' else 'Different network correlation', 'range': [-1, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_box_high_temporal_res_' + str(_high_temporal_resolution) + '_' + _name) # bar plot if 'bar' in _plot_types: for _name, _sums in zip( ['same', 'different'], [_same_time_lags_highest, _different_time_lags_highest]): if _name in _plots: _fig = go.Figure( data=go.Bar( x=np.array(TIME_LAGS[_high_temporal_resolution]) * 5 if _high_temporal_resolution else 15, y=np.array(_sums) / sum(_sums), marker={'color': '#ea8500'}), layout={ 'xaxis': { 'title': 'Time lag (minutes)', 'zeroline': False, 'tickmode': 'array', 'tickvals': np.array(TIME_LAGS[_high_temporal_resolution]) * 5 if _high_temporal_resolution else 15 }, 'yaxis': { 'title': 'Highest correlations fraction', 'range': [0, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_bar_high_temporal_res_' + str(_high_temporal_resolution) + '_' + _name)
def main(_real_cells=True, _static=False, _band=True, _high_temporal_resolution=False): _experiments = all_experiments() _experiments = filtering.by_categories( _experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=_high_temporal_resolution, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False ) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_pair_distance_range(_tuples, PAIR_DISTANCE_RANGE) _tuples = filtering.by_real_pairs(_tuples, _real_pairs=_real_cells) _tuples = filtering.by_fake_static_pairs(_tuples, _fake_static_pairs=_static) _tuples = filtering.by_band(_tuples, _band=_band) print('Total tuples:', len(_tuples)) _arguments = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple _latest_time_frame = compute.latest_time_frame_before_overlapping(_experiment, _series_id, _group, OFFSET_X) for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': OFFSET_Y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_points': _latest_time_frame }) _z_array = np.zeros(shape=(len(BY), len(BY))) for (_padding_index, _padding_by), (_space_index, _space_by) in product(enumerate(BY), enumerate(BY)): print('Padding by: ', _padding_by, ', space by: ', _space_by) _correlation = compute_data(_tuples, _arguments, _padding_y_by=_padding_by, _padding_z_by=_padding_by, _space_y_by=_space_by, _space_z_by=_space_by) _z_array[_space_index, _padding_index] = _correlation # plot _colors_array = ['white', config.colors(1)] _fig = go.Figure( data=go.Heatmap( x=BY, y=BY, z=_z_array, colorscale=sns.color_palette(_colors_array).as_hex(), colorbar={ 'tickmode': 'array', 'tickvals': [0, 0.5, 1], 'ticktext': ['0', 'Correlation', '1'], 'tickangle': -90 }, showscale=True, zmin=0, zmax=1 ), layout={ 'xaxis': { 'title': 'Border size (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1, 1.5, 2] }, 'yaxis': { 'title': 'Space from quantification window (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1, 1.5, 2] } } ) save.to_html( _fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_high_time_' + str(_high_temporal_resolution) + '_band_' + str(_band) )
def main(_low_connectivity=False): _names_array, _x_array, _y_array = compute_cell_pairs(_low_connectivity) # plot _colors_array = config.colors(3) _fig = go.Figure(data=[ go.Scatter(x=_x, y=[np.mean(_array) for _array in _y], name=_name, error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _y], 'thickness': 1, 'color': _color }, mode='markers', marker={ 'size': 15, 'color': _color }, opacity=0.7) for _x, _y, _name, _color in zip( _x_array, _y_array, _names_array, _colors_array) ], layout={ 'xaxis': { 'title': 'Window distance (cell diameter)', 'zeroline': False }, 'yaxis': { 'title': 'Fiber density (z-score)', 'range': [-1.7, 13], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 4, 8, 12] }, 'legend': { 'xanchor': 'right', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2 }, 'shapes': [{ 'type': 'line', 'x0': -0.2, 'y0': -1.5, 'x1': 3.4, 'y1': -1.5, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -0.2, 'y0': -1.5, 'x1': -0.2, 'y1': 13, 'line': { 'color': 'black', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_low_con_' + str(_low_connectivity))
def main(): _arguments = [] for _tuple in TRIPLET: _experiment, _series_id, _group = _tuple _pair_distance = compute.pair_distance_in_cell_size_time_frame(_experiment, _series_id, _group, _time_frame=0) print(_tuple, 'pairs distance:', round(_pair_distance, 2)) _latest_time_frame = compute.latest_time_frame_before_overlapping(_experiment, _series_id, _group, OFFSET_X) for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': OFFSET_Y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_points': _latest_time_frame }) _windows_dictionary, _windows_to_compute = compute.windows(_arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _fiber_densities = compute.fiber_densities(_windows_to_compute, _subtract_border=True) _experiments_fiber_densities = { _key: [_fiber_densities[_tuple] for _tuple in _windows_dictionary[_key]] for _key in _windows_dictionary } _same_correlations_arrays = [[], [], []] _different_correlations_arrays = [[], [], []] _names_array = [] for _same_index in tqdm(range(3), desc='Main loop'): _same_tuple = TRIPLET[_same_index] _same_experiment, _same_series, _same_group = _same_tuple _same_left_cell_fiber_densities = \ _experiments_fiber_densities[ (_same_experiment, _same_series, _same_group, 'left_cell') ] _same_right_cell_fiber_densities = \ _experiments_fiber_densities[ (_same_experiment, _same_series, _same_group, 'right_cell') ] _same_properties = \ load.group_properties(_same_experiment, _same_series, _same_group) _same_left_cell_fiber_densities = compute.remove_blacklist( _same_experiment, _same_series, _same_properties['cells_ids']['left_cell'], _same_left_cell_fiber_densities ) _same_right_cell_fiber_densities = compute.remove_blacklist( _same_experiment, _same_series, _same_properties['cells_ids']['right_cell'], _same_right_cell_fiber_densities ) _same_left_cell_fiber_densities_filtered, _same_right_cell_fiber_densities_filtered = \ compute.longest_same_indices_shared_in_borders_sub_array( _same_left_cell_fiber_densities, _same_right_cell_fiber_densities ) _same_correlation = compute_lib.correlation( compute_lib.derivative(_same_left_cell_fiber_densities_filtered, _n=DERIVATIVE), compute_lib.derivative(_same_right_cell_fiber_densities_filtered, _n=DERIVATIVE) ) for _different_index in range(3): if _same_index != _different_index: _different_tuple = TRIPLET[_different_index] _different_experiment, _different_series, _different_group = \ _different_tuple for _same_cell_id, _different_cell_id in product(['left_cell', 'right_cell'], ['left_cell', 'right_cell']): _same_fiber_densities = _experiments_fiber_densities[( _same_experiment, _same_series, _same_group, _same_cell_id )] _different_fiber_densities = _experiments_fiber_densities[( _different_experiment, _different_series, _different_group, _different_cell_id )] _different_properties = load.group_properties( _different_experiment, _different_series, _different_group ) _same_fiber_densities = compute.remove_blacklist( _same_experiment, _same_series, _same_properties['cells_ids'][_same_cell_id], _same_fiber_densities ) _different_fiber_densities = compute.remove_blacklist( _different_experiment, _different_series, _different_properties['cells_ids'][_different_cell_id], _different_fiber_densities ) _same_fiber_densities_filtered, _different_fiber_densities_filtered = \ compute.longest_same_indices_shared_in_borders_sub_array( _same_fiber_densities, _different_fiber_densities ) _different_correlation = compute_lib.correlation( compute_lib.derivative(_same_fiber_densities_filtered, _n=DERIVATIVE), compute_lib.derivative(_different_fiber_densities_filtered, _n=DERIVATIVE) ) _same_correlations_arrays[_same_index].append(_same_correlation) _different_correlations_arrays[_same_index].append(_different_correlation) _names_array.append('Cells ' + _same_group.split('_')[1] + ' & ' + _same_group.split('_')[2]) print('Group:', TRIPLET[_same_index]) print('Points:', len(_same_correlations_arrays[_same_index])) _same_minus_different = \ np.array(_same_correlations_arrays[_same_index]) - np.array(_different_correlations_arrays[_same_index]) print('Wilcoxon of same minus different around the zero:') print(wilcoxon(_same_minus_different)) print('Higher same amount:', (_same_minus_different > 0).sum() / len(_same_minus_different)) print('Total points:', len(np.array(_same_correlations_arrays).flatten())) _same_minus_different = \ np.array(_same_correlations_arrays).flatten() - np.array(_different_correlations_arrays).flatten() print('Wilcoxon of same minus different around the zero:') print(wilcoxon(_same_minus_different)) print('Higher same amount:', (_same_minus_different > 0).sum() / len(_same_minus_different)) # plot _colors_array = config.colors(3) _fig = go.Figure( data=[ go.Scatter( x=_same_correlations_array, y=_different_correlations_array, name=_name, mode='markers', marker={ 'size': 15, 'color': _color }, opacity=0.7 ) for _same_correlations_array, _different_correlations_array, _name, _color in zip(_same_correlations_arrays, _different_correlations_arrays, _names_array, _colors_array) ], layout={ 'xaxis': { 'title': 'Same network correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'yaxis': { 'title': 'Different network correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'legend': { 'xanchor': 'left', 'x': 0.1, 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2, 'bgcolor': 'white' }, 'shapes': [ { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': -1, 'y1': 1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': 1, 'y1': -1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': 1, 'y1': 1, 'line': { 'color': 'red', 'width': 2 } } ] } ) save.to_html( _fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot' )
def main(_alpha=1, _beta=1, _low_connectivity=False, _plots=None, _plot_types=None): if _plots is None: _plots = ['same', 'different'] if _plot_types is None: _plot_types = ['scatter', 'box', 'bar'] _same_correlation_vs_time_lag, _same_time_lags_arrays, _different_time_lags_arrays, _same_time_lags_highest, \ _different_time_lags_highest = compute_fiber_densities(_alpha, _beta, _low_connectivity) if _plots is not None: # individual plots if 'scatter' in _plot_types: for _same_simulation in _same_correlation_vs_time_lag: _fig = go.Figure(data=go.Scatter( x=TIME_LAGS, y=_same_correlation_vs_time_lag[_same_simulation], mode='markers', marker={ 'size': 25, 'color': '#2e82bf' }), layout={ 'xaxis': { 'title': 'Time lag', 'zeroline': False, 'tickmode': 'array', 'tickvals': TIME_LAGS }, 'yaxis': { 'title': 'Correlation', 'range': [-1, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_' + _same_simulation) # box plots if 'box' in _plot_types: for _name, _arrays in zip( ['same', 'different'], [_same_time_lags_arrays, _different_time_lags_arrays]): if _name in _plots: _fig = go.Figure( data=[ go.Box(y=_y, name=_time_lag, boxpoints=False, line={'width': 1}, marker={ 'size': 10, 'color': '#2e82bf' }, showlegend=False) for _y, _time_lag in zip(_arrays, TIME_LAGS) ], layout={ 'xaxis': { 'title': 'Time lag', 'zeroline': False, 'tickmode': 'array', 'tickvals': TIME_LAGS }, 'yaxis': { 'title': 'Inner correlation' if _name == 'same' else 'Different network correlation', 'range': [-1, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_box_alpha_' + str(_alpha) + '_beta_' + str(_beta) + '_low_con_' + str(_low_connectivity) + '_' + _name) # bar plot if 'bar' in _plot_types: for _name, _sums in zip( ['same', 'different'], [_same_time_lags_highest, _different_time_lags_highest]): if _name in _plots: _fig = go.Figure( data=go.Bar(x=TIME_LAGS, y=np.array(_sums) / sum(_sums), marker={'color': '#2e82bf'}), layout={ 'xaxis': { 'title': 'Time lag', 'zeroline': False, 'tickmode': 'array', 'tickvals': TIME_LAGS }, 'yaxis': { 'title': 'Highest correlation fraction', 'range': [0, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_bar_alpha_' + str(_alpha) + '_beta_' + str(_beta) + '_low_con_' + str(_low_connectivity) + '_' + _name)
def main(_low_connectivity=False): print('Simulations') _simulations_pairs_fiber_densities = \ inner_density_vs_window_distance_cell_pairs.compute_simulations_data(_low_connectivity) _simulations_single_cells_fiber_densities = \ inner_density_vs_window_distance_single_cells.compute_simulations_data(_low_connectivity) _min_simulations_fiber_densities_length = \ min(len(_simulations_pairs_fiber_densities), len(_simulations_single_cells_fiber_densities)) _simulations_fiber_densities_differences = \ np.mean(_simulations_pairs_fiber_densities[:_min_simulations_fiber_densities_length], axis=1) - \ np.mean(_simulations_single_cells_fiber_densities[:_min_simulations_fiber_densities_length], axis=1) print('Experiments') _experiments_pairs_fiber_densities, _ = inner_density_vs_window_distance_cell_pairs.compute_experiments_data( ) _experiments_single_cells_fiber_densities = inner_density_vs_window_distance_single_cells.compute_experiments_data( ) _experiments_pairs_fiber_densities_averages = \ np.array([np.mean(_array) for _array in _experiments_pairs_fiber_densities]) _experiments_single_cells_fiber_densities_averages = \ np.array([np.mean(_array) for _array in _experiments_single_cells_fiber_densities]) _min_experiments_fiber_densities_length = \ min(len(_experiments_pairs_fiber_densities_averages), len(_experiments_single_cells_fiber_densities_averages)) _experiments_fiber_densities_differences = \ _experiments_pairs_fiber_densities_averages[:_min_experiments_fiber_densities_length] - \ _experiments_single_cells_fiber_densities_averages[:_min_experiments_fiber_densities_length] # plot _fig = go.Figure(data=[ go.Scatter(x=OFFSETS_X, y=_simulations_fiber_densities_differences, name='Simulations', mode='markers', marker={ 'size': 15, 'color': '#005b96' }, opacity=0.7), go.Scatter(x=OFFSETS_X, y=_experiments_fiber_densities_differences, name='Experiments', mode='markers', marker={ 'size': 15, 'color': '#ea8500' }, opacity=0.7) ], layout={ 'xaxis': { 'title': 'Window distance (cell diameter)', 'zeroline': False }, 'yaxis': { 'title': 'Fiber density difference (z-score)', 'range': [-0.2, 6], 'zeroline': False, 'tickvals': [0, 2, 4] }, 'legend': { 'xanchor': 'right', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2, 'bgcolor': 'white' }, 'shapes': [{ 'type': 'line', 'x0': -0.2, 'y0': 0, 'x1': 2.6, 'y1': 0, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -0.2, 'y0': 0, 'x1': -0.2, 'y1': 6, 'line': { 'color': 'black', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths_lib.PLOTS, save.get_module_name()), _filename='plot_low_con_' + str(_low_connectivity))
def main(_real_cells=True, _static=False, _band=True, _high_temporal_resolution=False, _pair_distance_range=None, _offset_y=0.5): if _pair_distance_range is None: _pair_distance_range = PAIR_DISTANCE_RANGE _experiments = all_experiments() _experiments = filtering.by_categories( _experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=_high_temporal_resolution, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_pair_distance_range(_tuples, _pair_distance_range) _tuples = filtering.by_real_pairs(_tuples, _real_pairs=_real_cells) _tuples = filtering.by_fake_static_pairs(_tuples, _fake_static_pairs=_static) _tuples = filtering.by_band(_tuples, _band=_band) print('Total tuples:', len(_tuples)) _arguments = [] _longest_time_frame = 0 for _tuple in _tuples: _experiment, _series_id, _group = _tuple _latest_time_frame = compute.latest_time_frame_before_overlapping( _experiment, _series_id, _group, OFFSET_X) # save for later if _latest_time_frame > _longest_time_frame: _longest_time_frame = _latest_time_frame for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': _offset_y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_points': _latest_time_frame }) _windows_dictionary, _windows_to_compute = compute.windows( _arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _fiber_densities = compute.fiber_densities(_windows_to_compute) _experiments_fiber_densities = { _key: [_fiber_densities[_tuple] for _tuple in _windows_dictionary[_key]] for _key in _windows_dictionary } _valid_tuples = [] _valid_cells = [] _densities = [[] for _ in range(_longest_time_frame)] for _tuple in tqdm(_tuples, desc='Experiments loop'): _experiment, _series_id, _group = _tuple _normalization = load.normalization_series_file_data( _experiment, _series_id) _properties = load.group_properties(_experiment, _series_id, _group) for _cell_id in ['left_cell', 'right_cell']: _cell_fiber_densities = \ _experiments_fiber_densities[(_experiment, _series_id, _group, _cell_id)] _cell_fiber_densities = compute.remove_blacklist( _experiment, _series_id, _properties['cells_ids'][_cell_id], _cell_fiber_densities) _previous_cell_fiber_density_normalized = None for _time_frame, _cell_fiber_density in enumerate( _cell_fiber_densities): # not out of border if _cell_fiber_density[1]: _previous_cell_fiber_density_normalized = None continue # normalize _cell_fiber_density_normalized = compute_lib.z_score( _x=_cell_fiber_density[0], _average=_normalization['average'], _std=_normalization['std']) # no previous if _previous_cell_fiber_density_normalized is None: _previous_cell_fiber_density_normalized = _cell_fiber_density_normalized continue # change _cell_fiber_density_normalized_change = _cell_fiber_density_normalized - _previous_cell_fiber_density_normalized _previous_cell_fiber_density_normalized = _cell_fiber_density_normalized # save _densities[_time_frame].append( _cell_fiber_density_normalized_change) if _tuple not in _valid_tuples: _valid_tuples.append(_tuple) _cell_tuple = (_experiment, _series_id, _group, _cell_id) if _cell_tuple not in _valid_cells: _valid_cells.append(_cell_tuple) print('Total pairs:', len(_valid_tuples)) print('Total cells:', len(_valid_cells)) # plot _temporal_resolution = compute.temporal_resolution_in_minutes( _experiments[0]) _fig = go.Figure( data=go.Scatter(x=np.array(range(_longest_time_frame)) * _temporal_resolution, y=[np.mean(_array) for _array in _densities], name='Fiber density change (z-score)', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _densities], 'thickness': 1 }, mode='lines+markers', marker={ 'size': 5, 'color': '#ea8500' }, line={'dash': 'solid'}, showlegend=False), layout={ 'xaxis': { 'title': 'Time (minutes)', # 'zeroline': False }, 'yaxis': { 'title': 'Fiber density change (z-score)', # 'zeroline': False }, # 'shapes': [ # { # 'type': 'line', # 'x0': -_temporal_resolution, # 'y0': -0.5, # 'x1': -_temporal_resolution, # 'y1': 2, # 'line': { # 'color': 'black', # 'width': 2 # } # }, # { # 'type': 'line', # 'x0': -_temporal_resolution, # 'y0': -0.5, # 'x1': 350, # 'y1': -0.5, # 'line': { # 'color': 'black', # 'width': 2 # } # } # ] }) save.to_html( _fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_real_' + str(_real_cells) + '_static_' + str(_static) + '_band_' + str(_band) + '_high_time_' + str(_high_temporal_resolution) + '_range_' + '_'.join([str(_distance) for _distance in _pair_distance_range]) + '_y_' + str(_offset_y))
def main(): _simulations = load.structured() _simulations = filtering.by_time_points_amount( _simulations, _time_points=SIMULATIONS_TIME_POINTS) _simulations = filtering.by_categories(_simulations, _is_single_cell=False, _is_heterogeneity=True, _is_low_connectivity=False, _is_causality=False, _is_dominant_passive=False, _is_fibrin=False) _simulations = filtering.by_heterogeneity(_simulations, _std=STD) _simulations = filtering.by_pair_distances(_simulations, _distances=PAIR_DISTANCE) print('Total simulations:', len(_simulations)) _fiber_densities = compute_fiber_densities(_simulations) _x_arrays = [[] for _i in PAIR_DISTANCE] _y_arrays = [[] for _i in PAIR_DISTANCE] for _distance_index, _distance in enumerate(PAIR_DISTANCE): _distance_simulations = filtering.by_pair_distance(_simulations, _distance=_distance) print('Distance:', _distance, 'Total simulations:', len(_distance_simulations)) for _simulation in tqdm(_distance_simulations, desc='Simulations loop'): for _direction in ['inside', 'outside']: _left_cell_fiber_densities = _fiber_densities[(_simulation, 'left_cell', _direction)] _right_cell_fiber_densities = _fiber_densities[(_simulation, 'right_cell', _direction)] _correlation = compute_lib.correlation( compute_lib.derivative(_left_cell_fiber_densities, _n=DERIVATIVE), compute_lib.derivative(_right_cell_fiber_densities, _n=DERIVATIVE)) if _direction == 'inside': _x_arrays[_distance_index].append(_correlation) else: _y_arrays[_distance_index].append(_correlation) print('Wilcoxon of insides minus outsides around the zero:') print( wilcoxon( np.array(_x_arrays[_distance_index]) - np.array(_y_arrays[_distance_index]))) # 2d plots _colors_array = config.colors(4) _legendgroup_array = ['group_1', 'group_1', 'group_2', 'group_2'] _fig = go.Figure(data=[ go.Scatter(x=_x, y=_y, name='Dist. ' + str(_distance), mode='markers', marker={ 'size': 10, 'color': _color }, legendgroup=_legendgroup) for _x, _y, _distance, _color, _legendgroup in zip( _x_arrays, _y_arrays, PAIR_DISTANCE, _colors_array, _legendgroup_array) ], layout={ 'xaxis': { 'title': 'Inner correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'yaxis': { 'title': 'Outer correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'legend': { 'x': 0.1, 'y': 1, 'xanchor': 'left', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2, 'bgcolor': 'white', 'orientation': 'h' }, 'shapes': [{ 'type': 'line', 'x0': -1, 'y0': -1, 'x1': -1, 'y1': 1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': 1, 'y1': -1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': 1, 'y1': 1, 'line': { 'color': 'red', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot') for _x, _y, _distance, _color in zip(_x_arrays, _y_arrays, PAIR_DISTANCE, _colors_array): _fig = go.Figure(data=go.Scatter(x=_x, y=_y, name='Dist. ' + str(_distance), mode='markers', marker={ 'size': 10, 'color': _color }, showlegend=True), layout={ 'xaxis': { 'title': 'Inner correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'yaxis': { 'title': 'Outer correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'legend': { 'xanchor': 'left', 'x': 0.1, 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2, 'bgcolor': 'white' }, 'shapes': [{ 'type': 'line', 'x0': -1, 'y0': -1, 'x1': -1, 'y1': 1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': 1, 'y1': -1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': 1, 'y1': 1, 'line': { 'color': 'red', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_distance_' + str(_distance)) # box plot _box_y_arrays = [[] for _i in PAIR_DISTANCE] for _x_array, _y_array, _distance_index in zip(_x_arrays, _y_arrays, range(len(PAIR_DISTANCE))): for _x, _y in zip(_x_array, _y_array): _point_distance = compute_lib.distance_from_a_point_to_a_line( _line=[-1, -1, 1, 1], _point=[_x, _y]) if _x > _y: _box_y_arrays[_distance_index].append(_point_distance) else: _box_y_arrays[_distance_index].append(-_point_distance) _fig = go.Figure(data=[ go.Box(y=_y, name=str(_distance), boxpoints='all', jitter=1, pointpos=0, line={'width': 1}, fillcolor='white', marker={ 'size': 10, 'color': _color }, showlegend=False) for _y, _distance, _color in zip( _box_y_arrays, PAIR_DISTANCE, _colors_array) ], layout={ 'xaxis': { 'title': 'Pair distance (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': PAIR_DISTANCE, 'type': 'category' }, 'yaxis': { 'title': 'Inner minus outer correlation', 'zeroline': False, 'tickmode': 'array', 'tickvals': [-0.2, 0, 0.2, 0.4] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_box')
def main(): _experiments = all_experiments() _experiments = filtering.by_categories(_experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=False, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_time_frames_amount( _tuples, compute.density_time_frame(_experiments[0])) _tuples = filtering.by_real_pairs(_tuples) _tuples = filtering.by_band(_tuples) _max_offsets_x = [] _arguments = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple _time_frame = compute.minimum_time_frames_for_correlation(_experiment) _pair_distance = \ compute.pair_distance_in_cell_size_time_frame(_experiment, _series_id, _group, _time_frame=_time_frame - 1) _offsets_x = \ np.arange(start=0, stop=_pair_distance / 2 - 0.5 - QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, step=OFFSET_X_STEP) if len(_offsets_x) > len(_max_offsets_x): _max_offsets_x = _offsets_x for _offset_x in _offsets_x: for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': _offset_x, 'offset_y': OFFSET_Y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_point': _time_frame - 1 }) _windows_dictionary, _windows_to_compute = \ compute.windows(_arguments, _keys=['experiment', 'series_id', 'group', 'offset_x', 'cell_id']) _fiber_densities = compute.fiber_densities(_windows_to_compute) _x_array = [] _y_array = [] _n_array = [] _p_value_array = [] for _offset_x in _max_offsets_x: _pair_distances = [] _z_scores = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple for _cell_id in ['left_cell', 'right_cell']: if (_experiment, _series_id, _group, _offset_x, _cell_id) in _windows_dictionary: _normalization = load.normalization_series_file_data( _experiment, _series_id) _window_tuple = _windows_dictionary[(_experiment, _series_id, _group, _offset_x, _cell_id)][0] _fiber_density = _fiber_densities[_window_tuple] if not OUT_OF_BOUNDARIES and _fiber_density[1]: continue _normalized_fiber_density = compute_lib.z_score( _x=_fiber_density[0], _average=_normalization['average'], _std=_normalization['std']) if not np.isnan(_normalized_fiber_density): _pair_distances.append( compute.pair_distance_in_cell_size_time_frame( _experiment, _series_id, _group, _time_frame=0)) _z_scores.append(_normalized_fiber_density) if len(_pair_distances) > 2: _x_array.append(round(_offset_x, 1)) _correlation = compute_lib.correlation(_pair_distances, _z_scores, _with_p_value=True) _y_array.append(round(_correlation[0], 2)) _n_array.append(len(_pair_distances)) _p_value_array.append(round(_correlation[1], 2)) print('Pearson:') print(compute_lib.correlation(_x_array, _y_array, _with_p_value=True)) # plot _significant_x_array = [ _x for _x, _p_value in zip(_x_array, _p_value_array) if _p_value < 0.05 ] _fig = go.Figure(data=[ go.Scatter(x=_x_array, y=_y_array, mode='markers', marker={ 'size': 15, 'color': 'black' }, showlegend=False), go.Scatter(x=_significant_x_array, y=[-0.79] * len(_significant_x_array), mode='text', text='*', textfont={'color': 'red'}, showlegend=False) ], layout={ 'xaxis': { 'title': 'Window distance (cell diameter)', 'zeroline': False }, 'yaxis': { 'title': 'Correlation:<br>pair distance vs. fiber density', 'zeroline': False, 'range': [-0.82, 0.3], 'tickmode': 'array', 'tickvals': [-0.75, -0.25, 0.25] }, 'shapes': [{ 'type': 'line', 'x0': -0.2, 'y0': -0.8, 'x1': 3.2, 'y1': -0.8, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -0.2, 'y0': -0.8, 'x1': -0.2, 'y1': 0.3, 'line': { 'color': 'black', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot') # table print('Window distance (cell diameter)', 'Correlation: pair distance vs. fiber density', 'N', 'P-value', sep='\t') for _x, _y, _n, _p_value in zip(_x_array, _y_array, _n_array, _p_value_array): print(_x, _y, _n, _p_value, sep='\t')
def main(_low_connectivity=False): print('Simulations') _simulations_fiber_densities = compute_simulations_data(_low_connectivity) print('Experiments') _experiments_fiber_densities, _experiments_offsets_x = compute_experiments_data( ) # plot _fig = go.Figure(data=[ go.Scatter( x=SIMULATIONS_OFFSETS_X, y=[np.mean(_array) for _array in _simulations_fiber_densities], name='Simulations', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _simulations_fiber_densities], 'thickness': 1, 'color': '#005b96' }, mode='markers', marker={ 'size': 15, 'color': '#005b96' }, opacity=0.7), go.Scatter( x=_experiments_offsets_x, y=[np.mean(_array) for _array in _experiments_fiber_densities], name='Experiments', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _experiments_fiber_densities], 'thickness': 1, 'color': '#ea8500' }, mode='markers', marker={ 'size': 15, 'color': '#ea8500' }, opacity=0.7) ], layout={ 'xaxis': { 'title': 'Window distance (cell diameter)', 'zeroline': False }, 'yaxis': { 'title': 'Fiber density (z-score)', 'range': [-1.7, 13], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 4, 8, 12] }, 'legend': { 'xanchor': 'right', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2 }, 'shapes': [{ 'type': 'line', 'x0': -0.2, 'y0': -1.5, 'x1': 3.4, 'y1': -1.5, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -0.2, 'y0': -1.5, 'x1': -0.2, 'y1': 13, 'line': { 'color': 'black', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths_lib.PLOTS, save.get_module_name()), _filename='plot_pair_distance_' + str(PAIR_DISTANCE) + '_low_con_' + str(_low_connectivity))
def main(_real_cells=True, _static=False, _band=True, _high_temporal_resolution=False): _experiments = all_experiments() _experiments = filtering.by_categories( _experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=_high_temporal_resolution, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False ) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_pair_distance_range(_tuples, PAIR_DISTANCE_RANGE) _tuples = filtering.by_real_pairs(_tuples, _real_pairs=_real_cells) _tuples = filtering.by_fake_static_pairs(_tuples, _fake_static_pairs=_static) _tuples = filtering.by_band(_tuples, _band=_band) _tuples = filtering.by_time_frames_amount(_tuples, compute.minimum_time_frames_for_correlation(_experiments[0])) print('Total tuples:', len(_tuples)) print('Density') _arguments = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple _time_frame = compute.minimum_time_frames_for_correlation(_experiment) for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': OFFSET_Y_DENSITY, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_point': _time_frame - 1 }) _windows_dictionary, _windows_to_compute = \ compute.windows(_arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _densities_fiber_densities = compute.fiber_densities(_windows_to_compute, _subtract_border=False) _densities_experiments_fiber_densities = { _key: [_densities_fiber_densities[_tuple] for _tuple in _windows_dictionary[_key]] for _key in _windows_dictionary } print('Correlations') _arguments = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple _latest_time_frame = compute.latest_time_frame_before_overlapping(_experiment, _series_id, _group, OFFSET_X) for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': OFFSET_Y_CORRELATION, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_points': _latest_time_frame }) _windows_dictionary, _windows_to_compute = \ compute.windows(_arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _correlations_fiber_densities = compute.fiber_densities(_windows_to_compute, _subtract_border=True) _correlations_experiments_fiber_densities = { _key: [_correlations_fiber_densities[_tuple] for _tuple in _windows_dictionary[_key]] for _key in _windows_dictionary } _densities = [] _correlations = [] for _tuple in tqdm(_tuples, desc='Main loop'): _experiment, _series_id, _group = _tuple # density _left_cell_fiber_density = \ _densities_experiments_fiber_densities[(_experiment, _series_id, _group, 'left_cell')][0] _right_cell_fiber_density = \ _densities_experiments_fiber_densities[(_experiment, _series_id, _group, 'right_cell')][0] # not relevant if _left_cell_fiber_density[1] or _right_cell_fiber_density[1]: continue _normalization = load.normalization_series_file_data(_experiment, _series_id) _left_cell_fiber_density_normalized = compute_lib.z_score( _x=_left_cell_fiber_density[0], _average=_normalization['average'], _std=_normalization['std'] ) _right_cell_fiber_density_normalized = compute_lib.z_score( _x=_right_cell_fiber_density[0], _average=_normalization['average'], _std=_normalization['std'] ) _density = (_left_cell_fiber_density_normalized + _right_cell_fiber_density_normalized) / 2 # correlation _left_cell_fiber_densities = \ _correlations_experiments_fiber_densities[(_experiment, _series_id, _group, 'left_cell')] _right_cell_fiber_densities = \ _correlations_experiments_fiber_densities[(_experiment, _series_id, _group, 'right_cell')] _properties = load.group_properties(_experiment, _series_id, _group) _left_cell_fiber_densities = compute.remove_blacklist( _experiment, _series_id, _properties['cells_ids']['left_cell'], _left_cell_fiber_densities) _right_cell_fiber_densities = compute.remove_blacklist( _experiment, _series_id, _properties['cells_ids']['right_cell'], _right_cell_fiber_densities) _left_cell_fiber_densities_filtered, _right_cell_fiber_densities_filtered = \ compute.longest_same_indices_shared_in_borders_sub_array( _left_cell_fiber_densities, _right_cell_fiber_densities ) # ignore small arrays if len(_left_cell_fiber_densities_filtered) < compute.minimum_time_frames_for_correlation(_experiment): continue _correlation = compute_lib.correlation( compute_lib.derivative(_left_cell_fiber_densities_filtered, _n=DERIVATIVE), compute_lib.derivative(_right_cell_fiber_densities_filtered, _n=DERIVATIVE) ) _densities.append(_density) _correlations.append(_correlation) print('Total tuples:', len(_densities)) print('Pearson correlation of densities and correlations:') print(compute_lib.correlation(_densities, _correlations, _with_p_value=True)) # plot _fig = go.Figure( data=go.Scatter( x=_densities, y=_correlations, mode='markers', marker={ 'size': 5, 'color': '#ea8500' }, showlegend=False ), layout={ 'xaxis': { 'title': 'Fiber density (z-score)', 'zeroline': False, 'range': [-1.1, 15.2], # 'tickmode': 'array', # 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'yaxis': { 'title': 'Correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'shapes': [ { 'type': 'line', 'x0': 0, 'y0': -1, 'x1': 0, 'y1': 1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': 0, 'y0': -1, 'x1': 15, 'y1': -1, 'line': { 'color': 'black', 'width': 2 } } ] } ) save.to_html( _fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_real_' + str(_real_cells) + '_static_' + str(_static) + '_band_' + str(_band) + '_high_time_' + str(_high_temporal_resolution) + '_y_density_' + str(OFFSET_Y_DENSITY) + '_y_correlation_' + str(OFFSET_Y_CORRELATION) )
def main(_band=True, _high_temporal_resolution=False, _offset_x=OFFSET_X, _offset_y_start=OFFSET_Y_START, _offset_y_end=OFFSET_Y_END, _offset_y_step=OFFSET_Y_STEP, _offset_z_start=OFFSET_Z_START, _offset_z_end=OFFSET_Z_END, _offset_z_step=OFFSET_Z_STEP): global _tuples, _experiments_fiber_densities, _z_array compute_z_array(_band=_band, _high_temporal_resolution=_high_temporal_resolution, _offset_x=OFFSET_X, _offset_y_start=OFFSET_Y_START, _offset_y_end=OFFSET_Y_END, _offset_y_step=OFFSET_Y_STEP, _offset_z_start=OFFSET_Z_START, _offset_z_end=OFFSET_Z_END, _offset_z_step=OFFSET_Z_STEP) # plot _offsets_y = np.arange(start=_offset_y_start, stop=_offset_y_end + _offset_y_step, step=_offset_y_step) _offsets_z = np.arange(start=_offset_z_start, stop=_offset_z_end + _offset_z_step, step=_offset_z_step) _colors_array = ['white', config.colors(1)] _fig = go.Figure(data=go.Heatmap( x=_offsets_z, y=_offsets_y, z=_z_array, colorscale=sns.color_palette(_colors_array).as_hex(), colorbar={ 'tickmode': 'array', 'tickvals': [0, 0.35, 0.7], 'ticktext': ['0.0', 'Z-score change', '0.7'], 'tickangle': -90 }, showscale=True, zmin=0, zmax=0.7), layout={ 'xaxis': { 'title': 'Offset in XY axis (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [-4, -2, 0, 2, 4] }, 'yaxis': { 'title': 'Offset in Z axis (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [-1, 0, 1, 2] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_high_time_' + str(_high_temporal_resolution) + '_band_' + str(_band))
def main(): _simulations = load.structured() _simulations = filtering.by_time_points_amount(_simulations, TIME_POINT) _simulations = filtering.by_categories(_simulations, _is_single_cell=False, _is_heterogeneity=True, _is_low_connectivity=False, _is_causality=False, _is_dominant_passive=False, _is_fibrin=False) _simulations = filtering.by_heterogeneity(_simulations, _std=STD) _simulations = filtering.by_pair_distance(_simulations, _distance=PAIR_DISTANCE) print('Total simulations:', len(_simulations)) _fiber_densities = compute_fiber_densities(_simulations) _n = 0 _cells_potential_matches = [] _cells_ranks = [] for _simulation_1 in tqdm(_simulations, desc='Main loop'): for _cell_1_id, _cell_1_correct_match_cell_id in zip( ['left_cell', 'right_cell'], ['right_cell', 'left_cell']): _cell_1 = (_simulation_1, _cell_1_id) _cell_1_correct_match = (_simulation_1, _cell_1_correct_match_cell_id) _cell_1_fiber_densities = _fiber_densities[_cell_1] _cell_1_correlations = [] _cell_1_correct_match_correlation = None for _simulation_2 in _simulations: for _cell_2_id in ['left_cell', 'right_cell']: _cell_2 = (_simulation_2, _cell_2_id) # same cell if _cell_1 == _cell_2: continue _cell_2_fiber_densities = _fiber_densities[_cell_2] _correlation = compute_lib.correlation( compute_lib.derivative(_cell_1_fiber_densities, _n=DERIVATIVE), compute_lib.derivative(_cell_2_fiber_densities, _n=DERIVATIVE)) _cell_1_correlations.append(_correlation) # correct match if _cell_2 == _cell_1_correct_match: _cell_1_correct_match_correlation = _correlation # correct match does not exist if _cell_1_correct_match_correlation is None: continue # check matchmaking _cell_1_total_potential_matches = len(_cell_1_correlations) if _cell_1_total_potential_matches > 1: _cell_1_correct_match_rank = 1 for _potential_match_correlation in sorted( _cell_1_correlations, reverse=True): if _cell_1_correct_match_correlation == _potential_match_correlation: break _cell_1_correct_match_rank += 1 _n += 1 _cells_potential_matches.append( _cell_1_total_potential_matches) _cells_ranks.append(_cell_1_correct_match_rank) # results _mean_cells_potential_matches = float(np.mean(_cells_potential_matches)) _mean_correct_match_probability = 1 / _mean_cells_potential_matches _first_place_correct_matches = sum( [1 for _rank in _cells_ranks if _rank == 1]) _first_place_fraction = _first_place_correct_matches / _n print('Matchmaking results:') print('Total cells:', _n) print('Average potential matches per cell:', round(_mean_cells_potential_matches, 2)) print('Average correct match probability:', round(_mean_correct_match_probability, 2)) print('Fraction of first place correct matches:', round(_first_place_fraction, 2)) # plot _x = list(range(MAX_RANK)) _x_text = [str(_rank + 1) for _rank in _x[:-1]] + [str(MAX_RANK) + '+'] _ranks_sums = [0 for _rank in _x] for _rank in _cells_ranks: if _rank < MAX_RANK: _ranks_sums[_rank - 1] += 1 else: _ranks_sums[-1] += 1 _y = np.array(_ranks_sums) / _n _fig = go.Figure(data=go.Bar(x=_x, y=_y, marker={'color': '#2e82bf'}), layout={ 'xaxis': { 'title': 'Correct match correlation rank', 'zeroline': False, 'tickmode': 'array', 'tickvals': _x, 'ticktext': _x_text }, 'yaxis': { 'title': 'Fraction', 'range': [0, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot') # correct match probability plot _y = [_mean_correct_match_probability] * (MAX_RANK - 1) + [ _mean_correct_match_probability * MAX_RANK ] _fig = go.Figure(data=go.Bar(x=_x, y=_y, marker={'color': '#2e82bf'}), layout={ 'xaxis': { 'title': 'Correct match correlation rank', 'zeroline': False, 'tickmode': 'array', 'tickvals': _x, 'ticktext': _x_text }, 'yaxis': { 'title': 'Fraction', 'range': [0, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_correct_match_prob')
def main(): _experiments = all_experiments() _experiments = filtering.by_categories(_experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=False, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_time_frames_amount( _tuples, compute.density_time_frame(_experiments[0])) _tuples = filtering.by_real_pairs(_tuples) _tuples = filtering.by_band(_tuples) _tuples = filtering.by_pair_distance_range(_tuples, PAIR_DISTANCE_RANGE) print('Total tuples:', len(_tuples)) _arguments = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple _latest_time_frame = compute.latest_time_frame_before_overlapping( _experiment, _series_id, _group, OFFSET_X) for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': OFFSET_Y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_points': _latest_time_frame }) _windows_dictionary, _windows_to_compute = \ compute.windows(_arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _fiber_densities = compute.fiber_densities(_windows_to_compute, _subtract_border=True) _experiments_fiber_densities = { _key: [_fiber_densities[_tuple] for _tuple in _windows_dictionary[_key]] for _key in _windows_dictionary } _kpss_y_arrays = [[] for _i in DERIVATIVES] _adf_y_arrays = [[] for _i in DERIVATIVES] for _tuple in tqdm(_tuples, desc='Experiments loop'): _experiment, _series_id, _group = _tuple _properties = load.group_properties(_experiment, _series_id, _group) _left_cell_fiber_densities = _experiments_fiber_densities[( _experiment, _series_id, _group, 'left_cell')] _left_cell_fiber_densities = compute.remove_blacklist( _experiment, _series_id, _properties['cells_ids']['left_cell'], _left_cell_fiber_densities) _right_cell_fiber_densities = _experiments_fiber_densities[( _experiment, _series_id, _group, 'right_cell')] _right_cell_fiber_densities = compute.remove_blacklist( _experiment, _series_id, _properties['cells_ids']['right_cell'], _right_cell_fiber_densities) if not OUT_OF_BOUNDARIES: _left_cell_fiber_densities = \ compute.longest_fiber_densities_ascending_sequence(_left_cell_fiber_densities) _right_cell_fiber_densities = \ compute.longest_fiber_densities_ascending_sequence(_right_cell_fiber_densities) else: _left_cell_fiber_densities = [ _fiber_density[0] for _fiber_density in _left_cell_fiber_densities ] _right_cell_fiber_densities = [ _fiber_density[0] for _fiber_density in _right_cell_fiber_densities ] # ignore small arrays _minimum_time_frames_for_correlation = compute.minimum_time_frames_for_correlation( _experiment) if len(_left_cell_fiber_densities) < _minimum_time_frames_for_correlation or \ len(_right_cell_fiber_densities) < _minimum_time_frames_for_correlation: continue for _derivative_index, _derivative in enumerate(DERIVATIVES): for _cell_fiber_densities in [ _left_cell_fiber_densities, _right_cell_fiber_densities ]: _cell_fiber_densities_derivative = compute_lib.derivative( _cell_fiber_densities, _n=_derivative) _, _kpss_p_value, _, _ = kpss(_cell_fiber_densities_derivative, nlags='legacy') _kpss_y_arrays[_derivative_index].append(_kpss_p_value) _, _adf_p_value, _, _, _, _ = adfuller( _cell_fiber_densities_derivative) _adf_y_arrays[_derivative_index].append(_adf_p_value) print('Total pairs:', len(_kpss_y_arrays[0]) / 2) # print results print('KPSS:') for _derivative_index, _derivative in enumerate(DERIVATIVES): _stationary_count = len([ _value for _value in _kpss_y_arrays[_derivative_index] if _value > 0.05 ]) print( 'Derivative:', _derivative, 'Stationary:', str(_stationary_count / len(_kpss_y_arrays[_derivative_index]) * 100) + '%') print('ADF:') for _derivative_index, _derivative in enumerate(DERIVATIVES): _stationary_count = len([ _value for _value in _adf_y_arrays[_derivative_index] if _value < 0.05 ]) print( 'Derivative:', _derivative, 'Stationary:', str(_stationary_count / len(_adf_y_arrays[_derivative_index]) * 100) + '%') # plot _colors_array = config.colors(3) for _test_name, _y_title, _y_tickvals, _p_value_line, _y_arrays in \ zip( ['kpss', 'adf'], ['KPSS test p-value', 'ADF test p-value'], [[0.05, 0.1], [0.05, 1]], [0.05, 0.05], [_kpss_y_arrays, _adf_y_arrays] ): _fig = go.Figure(data=[ go.Box(y=_y, name=_derivative, boxpoints='all', jitter=1, pointpos=0, line={'width': 1}, fillcolor='white', marker={ 'size': 10, 'color': _color }, opacity=0.7, showlegend=False) for _y, _derivative, _color in zip( _y_arrays, DERIVATIVES_TEXT, _colors_array) ], layout={ 'xaxis': { 'title': 'Fiber density derivative', 'zeroline': False }, 'yaxis': { 'title': _y_title, 'zeroline': False, 'tickmode': 'array', 'tickvals': _y_tickvals }, 'shapes': [{ 'type': 'line', 'x0': DERIVATIVES[0] - 0.75, 'y0': _p_value_line, 'x1': DERIVATIVES[-1] + 0.75, 'y1': _p_value_line, 'line': { 'color': 'red', 'width': 2, 'dash': 'dash' } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_' + _test_name)
def main(_high_temporal_resolution=True): _experiments = all_experiments() _experiments = filtering.by_categories( _experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=_high_temporal_resolution, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_time_frames_amount( _tuples, _time_frames=MOVING_WINDOW_LENGTH[_high_temporal_resolution]) _tuples = filtering.by_pair_distance_range( _tuples, _distance_range=PAIR_DISTANCE_RANGE) _tuples = filtering.by_real_pairs(_tuples) _tuples = filtering.by_band(_tuples) print('Total tuples:', len(_tuples)) _arguments = [] for _tuple in _tuples: _experiment, _series_id, _group = _tuple _latest_time_frame = compute.latest_time_frame_before_overlapping( _experiment, _series_id, _group, OFFSET_X) for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': OFFSET_Y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_points': _latest_time_frame }) _windows_dictionary, _windows_to_compute = compute.windows( _arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _fiber_densities = compute.fiber_densities(_windows_to_compute, _subtract_border=True) _experiments_fiber_densities = { _key: [_fiber_densities[_tuple] for _tuple in _windows_dictionary[_key]] for _key in _windows_dictionary } for _tuple in _tuples: _correlations = [] _experiment, _series_id, _group = _tuple _left_cell_fiber_densities = \ _experiments_fiber_densities[(_experiment, _series_id, _group, 'left_cell')] _right_cell_fiber_densities = \ _experiments_fiber_densities[(_experiment, _series_id, _group, 'right_cell')] _properties = load.group_properties(_experiment, _series_id, _group) _left_cell_fiber_densities = compute.remove_blacklist( _experiment, _series_id, _properties['cells_ids']['left_cell'], _left_cell_fiber_densities) _right_cell_fiber_densities = compute.remove_blacklist( _experiment, _series_id, _properties['cells_ids']['right_cell'], _right_cell_fiber_densities) for _start_time_frame in \ range(0, END_TIME_FRAME[_high_temporal_resolution], TIME_FRAME_STEP[_high_temporal_resolution]): _left_cell_fiber_densities_window = _left_cell_fiber_densities[ _start_time_frame:_start_time_frame + MOVING_WINDOW_LENGTH[_high_temporal_resolution]] _right_cell_fiber_densities_window = _right_cell_fiber_densities[ _start_time_frame:_start_time_frame + MOVING_WINDOW_LENGTH[_high_temporal_resolution]] _left_cell_fiber_densities_filtered, _right_cell_fiber_densities_filtered = \ compute.longest_same_indices_shared_in_borders_sub_array( _left_cell_fiber_densities_window, _right_cell_fiber_densities_window) # ignore small arrays if len(_left_cell_fiber_densities_filtered ) < MOVING_WINDOW_LENGTH[_high_temporal_resolution]: _correlations.append(None) continue _correlations.append( compute_lib.correlation( compute_lib.derivative(_left_cell_fiber_densities_filtered, _n=DERIVATIVE), compute_lib.derivative( _right_cell_fiber_densities_filtered, _n=DERIVATIVE))) # plot _temporal_resolution = compute.temporal_resolution_in_minutes( _experiment) _fig = go.Figure(data=go.Scatter( x=np.arange(start=0, stop=len(_correlations), step=1) * _temporal_resolution * TIME_FRAME_STEP[_high_temporal_resolution], y=_correlations, mode='lines+markers', line={'dash': 'solid'}), layout={ 'xaxis': { 'title': 'Window start time (minutes)', 'zeroline': False }, 'yaxis': { 'title': 'Inner correlation', 'zeroline': False } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_' + str(_experiment) + '_' + str(_series_id) + '_' + str(_group))
def main(): _simulations = load.structured() _simulations = filtering.by_time_points_amount(_simulations, TIME_POINTS) _simulations = filtering.by_categories( _simulations, _is_single_cell=False, _is_heterogeneity=True, _is_low_connectivity=False, _is_causality=False, _is_dominant_passive=False, _is_fibrin=False ) _simulations = filtering.by_pair_distance(_simulations, _distance=PAIR_DISTANCE) _simulations = filtering.by_heterogeneity(_simulations, _std=STD) print('Total simulations:', len(_simulations)) _fiber_densities = compute_fiber_densities(_simulations) _window_distances_communicating = [[] for _i in OFFSETS_X] _window_distances_non_communicating = [[] for _i in OFFSETS_X] # window distances loop for _window_distance_index, _window_distance in enumerate(OFFSETS_X): print('Window distance:', _window_distance) # communicating loop for _simulation in tqdm(_simulations, desc='Communicating loop'): _left_cell_fiber_densities = _fiber_densities[(_simulation, _window_distance, 'left_cell')] _right_cell_fiber_densities = _fiber_densities[(_simulation, _window_distance, 'right_cell')] _correlation = compute_lib.correlation( compute_lib.derivative(_left_cell_fiber_densities, _n=DERIVATIVE), compute_lib.derivative(_right_cell_fiber_densities, _n=DERIVATIVE) ) _window_distances_communicating[_window_distance_index].append(_correlation) # non-communicating loop _simulations_indices = range(len(_simulations)) for _simulation_1_index in tqdm(_simulations_indices, desc='Non-communicating pairs loop'): _simulation_1 = _simulations[_simulation_1_index] for _simulation_2_index in _simulations_indices[_simulation_1_index + 1:]: _simulation_2 = _simulations[_simulation_2_index] for _simulation_1_cell_id, _simulation_2_cell_id in product(['left_cell', 'right_cell'], ['left_cell', 'right_cell']): _simulation_1_fiber_densities = \ _fiber_densities[(_simulation_1, _window_distance, _simulation_1_cell_id)] _simulation_2_fiber_densities = \ _fiber_densities[(_simulation_2, _window_distance, _simulation_2_cell_id)] _correlation = compute_lib.correlation( compute_lib.derivative(_simulation_1_fiber_densities, _n=DERIVATIVE), compute_lib.derivative(_simulation_2_fiber_densities, _n=DERIVATIVE) ) _window_distances_non_communicating[_window_distance_index].append(_correlation) # rank sums print('Wilcoxon rank-sum tests between communicating and non-communicating:', ranksums(_window_distances_communicating[_window_distance_index], _window_distances_non_communicating[_window_distance_index])) # plot _data = [] _colors_array = config.colors(2) for _communicating, _communicating_text, _pair_distances, _color in \ zip([True, False], ['Communicating', 'Non-communicating'], [_window_distances_communicating, _window_distances_non_communicating], _colors_array): _y = [] _x = [] for _window_distance_index, _window_distance in enumerate(OFFSETS_X): _y += _pair_distances[_window_distance_index] _x += [_window_distance for _i in _pair_distances[_window_distance_index]] _data.append( go.Box( y=_y, x=_x, name=_communicating_text, boxpoints='all' if _communicating else False, jitter=1, pointpos=0, line={ 'width': 1 }, fillcolor='white', marker={ 'size': 10, 'color': _color }, opacity=0.7 ) ) _fig = go.Figure( data=_data, layout={ 'xaxis': { 'title': 'Window distance (cell diameter)', 'zeroline': False, 'tickmode': 'array', 'tickvals': OFFSETS_X, 'type': 'category' }, 'yaxis': { 'title': 'Correlation', 'range': [-1, 1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'boxmode': 'group', 'legend': { 'xanchor': 'right', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2 } } ) save.to_html( _fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot' )
def main(): _experiments = all_experiments() _experiments = filtering.by_categories( _experiments=_experiments, _is_single_cell=False, _is_high_temporal_resolution=False, _is_bleb=False, _is_dead_dead=False, _is_live_dead=False, _is_bead=False, _is_metastasis=False ) _tuples = load.experiments_groups_as_tuples(_experiments) _tuples = filtering.by_real_pairs(_tuples) _tuples = filtering.by_band(_tuples) _tuples = filtering.by_time_frames_amount(_tuples, MINIMUM_TIME_FRAMES) _tuples = filtering.by_pair_distance_range(_tuples, [MINIMUM_PAIR_DISTANCE, sys.maxsize]) _triplets = filtering.by_triplets(_tuples) print('Total triplets:', len(_triplets)) _arguments = [] for _triplet in _triplets: for _tuple in _triplet: _experiment, _series_id, _group = _tuple _latest_time_frame = compute.latest_time_frame_before_overlapping(_experiment, _series_id, _group, OFFSET_X) for _cell_id in ['left_cell', 'right_cell']: _arguments.append({ 'experiment': _experiment, 'series_id': _series_id, 'group': _group, 'length_x': QUANTIFICATION_WINDOW_LENGTH_IN_CELL_DIAMETER, 'length_y': QUANTIFICATION_WINDOW_HEIGHT_IN_CELL_DIAMETER, 'length_z': QUANTIFICATION_WINDOW_WIDTH_IN_CELL_DIAMETER, 'offset_x': OFFSET_X, 'offset_y': OFFSET_Y, 'offset_z': OFFSET_Z, 'cell_id': _cell_id, 'direction': 'inside', 'time_points': _latest_time_frame }) _windows_dictionary, _windows_to_compute = compute.windows(_arguments, _keys=['experiment', 'series_id', 'group', 'cell_id']) _fiber_densities = compute.fiber_densities(_windows_to_compute, _subtract_border=True) _experiments_fiber_densities = { _key: [_fiber_densities[_tuple] for _tuple in _windows_dictionary[_key]] for _key in _windows_dictionary } _same_correlations_arrays = [[] for _i in _triplets] _different_correlations_arrays = [[] for _i in _triplets] _names_array = [] for _triplet_index, _triplet in enumerate(_triplets): for _same_index in tqdm(range(len(_triplet)), desc='Main loop'): _same_tuple = _triplet[_same_index] _same_experiment, _same_series, _same_group = _same_tuple _same_left_cell_fiber_densities = \ _experiments_fiber_densities[ (_same_experiment, _same_series, _same_group, 'left_cell') ] _same_right_cell_fiber_densities = \ _experiments_fiber_densities[ (_same_experiment, _same_series, _same_group, 'right_cell') ] _same_properties = \ load.group_properties(_same_experiment, _same_series, _same_group) _same_left_cell_fiber_densities = compute.remove_blacklist( _same_experiment, _same_series, _same_properties['cells_ids']['left_cell'], _same_left_cell_fiber_densities ) _same_right_cell_fiber_densities = compute.remove_blacklist( _same_experiment, _same_series, _same_properties['cells_ids']['right_cell'], _same_right_cell_fiber_densities ) _same_left_cell_fiber_densities_filtered, _same_right_cell_fiber_densities_filtered = \ compute.longest_same_indices_shared_in_borders_sub_array( _same_left_cell_fiber_densities, _same_right_cell_fiber_densities ) _same_correlation = compute_lib.correlation( compute_lib.derivative(_same_left_cell_fiber_densities_filtered, _n=DERIVATIVE), compute_lib.derivative(_same_right_cell_fiber_densities_filtered, _n=DERIVATIVE) ) for _different_index in range(len(_triplet)): if _same_index != _different_index: _different_tuple = _triplet[_different_index] _different_experiment, _different_series, _different_group = \ _different_tuple for _same_cell_id, _different_cell_id in product(['left_cell', 'right_cell'], ['left_cell', 'right_cell']): _same_fiber_densities = _experiments_fiber_densities[( _same_experiment, _same_series, _same_group, _same_cell_id )] _different_fiber_densities = _experiments_fiber_densities[( _different_experiment, _different_series, _different_group, _different_cell_id )] _different_properties = load.group_properties( _different_experiment, _different_series, _different_group ) _same_fiber_densities = compute.remove_blacklist( _same_experiment, _same_series, _same_properties['cells_ids'][_same_cell_id], _same_fiber_densities ) _different_fiber_densities = compute.remove_blacklist( _different_experiment, _different_series, _different_properties['cells_ids'][_different_cell_id], _different_fiber_densities ) _same_fiber_densities_filtered, _different_fiber_densities_filtered = \ compute.longest_same_indices_shared_in_borders_sub_array( _same_fiber_densities, _different_fiber_densities ) _different_correlation = compute_lib.correlation( compute_lib.derivative(_same_fiber_densities_filtered, _n=DERIVATIVE), compute_lib.derivative(_different_fiber_densities_filtered, _n=DERIVATIVE) ) _same_correlations_arrays[_triplet_index].append(_same_correlation) _different_correlations_arrays[_triplet_index].append(_different_correlation) _names_array.append('Triplet #' + str(_triplet_index + 1)) print('Total points:', len(np.array(_same_correlations_arrays).flatten())) _same_minus_different = \ np.array(_same_correlations_arrays).flatten() - np.array(_different_correlations_arrays).flatten() print('Wilcoxon of same minus different around the zero:') print(wilcoxon(_same_minus_different)) print('Higher same amount:', (_same_minus_different > 0).sum() / len(_same_minus_different)) # plot _colors_array = ['green', 'blue', config.colors(1)] _fig = go.Figure( data=[ go.Scatter( x=_same_correlations_array, y=_different_correlations_array, name=_name, mode='markers', marker={ 'size': 15, 'color': _color }, opacity=0.7 ) for _same_correlations_array, _different_correlations_array, _name, _color in zip(_same_correlations_arrays, _different_correlations_arrays, _names_array, _colors_array) ], layout={ 'xaxis': { 'title': 'Same network correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'yaxis': { 'title': 'Different network correlation', 'zeroline': False, 'range': [-1.1, 1.2], 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] }, 'legend': { 'xanchor': 'left', 'x': 0.1, 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2, 'bgcolor': 'white' }, 'shapes': [ { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': -1, 'y1': 1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': 1, 'y1': -1, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -1, 'y0': -1, 'x1': 1, 'y1': 1, 'line': { 'color': 'red', 'width': 2 } } ] } ) save.to_html( _fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot' )
def main(_type='alpha', _low_connectivity=False, _plots=None, _plot_types=None): if _plots is None: _plots = ['same', 'different'] if _plot_types is None: _plot_types = ['stacked_bar', 'box', 'bar'] _same_arrays = [] _different_arrays = [] _same_highest = [] _different_highest = [] if _type == 'alpha': _alphas = ALPHAS _betas = [BETA] * len(ALPHAS) _names = _alphas elif _type == 'beta': _alphas = [ALPHA] * len(BETAS) _betas = BETAS _names = _betas else: raise Exception( 'No such type. Only \'alpha\' or \'beta\' are acceptable.') for _alpha, _beta in zip(_alphas, _betas): print('Alpha:', _alpha, 'beta:', _beta) _, _same_time_lags_arrays, _different_time_lags_arrays, _same_time_lags_highest, \ _different_time_lags_highest = same_inner_correlation_vs_different_inner_correlation_cross_correlation.compute_fiber_densities( _alpha=_alpha, _beta=_beta, _low_connectivity=_low_connectivity) _same_arrays.append(_same_time_lags_arrays[TIME_LAG_INDEX]) _different_arrays.append(_different_time_lags_arrays[TIME_LAG_INDEX]) _same_highest.append(_same_time_lags_highest) _different_highest.append(_different_time_lags_highest) if _plots is not None: # stacked bar plot if 'stacked_bar' in _plot_types: for _name, _sums in zip(['same', 'different'], [_same_highest, _different_highest]): if _name in _plots: _y_arrays = [[], [], []] for _type_sums in _sums: _left_wins, _none_wins, _right_wins = 0, 0, 0 for _time_lag, _type_sum in zip( same_inner_correlation_vs_different_inner_correlation_cross_correlation .TIME_LAGS, _type_sums): if _time_lag > 0: _left_wins += _type_sum elif _time_lag < 0: _right_wins += _type_sum else: _none_wins += _type_sum _total = sum(_type_sums) _y_arrays[0].append(_left_wins / _total) _y_arrays[1].append(_none_wins / _total) _y_arrays[2].append(_right_wins / _total) _colors_array = config.colors(3) _fig = go.Figure(data=[ go.Bar(x=_names, y=_y_array, name=_name, marker={'color': _color}) for _name, _y_array, _color in zip(['Leader', 'None', 'Follower'], _y_arrays, _colors_array) ], layout={ 'xaxis': { 'title': _type.capitalize(), 'zeroline': False, 'tickmode': 'array', 'tickvals': _names, 'type': 'category' }, 'yaxis': { 'title': 'Highest correlation fraction', 'range': [0, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1] }, 'barmode': 'stack', 'legend': { 'xanchor': 'right', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2 }, }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_stacked_bar_' + _type + '_low_con_' + str(_low_connectivity) + '_' + _name) # box plot if 'box' in _plot_types: for _name, _arrays in zip(['same', 'different'], [_same_arrays, _different_arrays]): if _name in _plots: _fig = go.Figure( data=[ go.Box(y=_y, name=_name, boxpoints=False, line={'width': 1}, marker={ 'size': 10, 'color': '#2e82bf' }, showlegend=False) for _y, _name in zip(_arrays, _names) ], layout={ 'xaxis': { 'title': _type.capitalize(), 'zeroline': False, 'tickmode': 'array', 'tickvals': _names, 'type': 'category' }, 'yaxis': { 'title': 'Inner correlation' if _name == 'same' else 'Different network correlation', 'range': [-1, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [-1, -0.5, 0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_box_' + _type + '_low_con_' + str(_low_connectivity) + '_' + _name) # bar plot if 'bar' in _plot_types: for _name, _sums in zip(['same', 'different'], [_same_highest, _different_highest]): if _name in _plots: _fig = go.Figure(data=go.Bar( x=_names, y=[ _type_sums[TIME_LAG_INDEX] / sum(_type_sums) for _type_sums in _sums ], marker={'color': '#2e82bf'}), layout={ 'xaxis': { 'title': _type.capitalize(), 'zeroline': False, 'tickmode': 'array', 'tickvals': _names, 'type': 'category' }, 'yaxis': { 'title': 'Lag ' + str(TIME_LAG) + ' highest correlation fraction', 'range': [0, 1.1], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 0.5, 1] } }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot_bar_' + _type + '_low_con_' + str(_low_connectivity) + '_' + _name)
def main(): print('Single cells') _single_cells_fiber_densities = inner_density_vs_window_distance_single_cells.compute_experiments_data() print('Cell pairs') _names_array, _x_array, _y_array = inner_density_vs_window_distance.compute_cell_pairs() # plot _colors_array = config.colors(len(_names_array) + 1) _fig = go.Figure( data=[ go.Scatter( x=_x, y=[np.mean(_array) for _array in _y], name=_name, error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _y], 'thickness': 1, 'color': _color }, mode='markers', marker={ 'size': 15, 'color': _color }, opacity=0.7 ) for _x, _y, _name, _color in zip(_x_array, _y_array, _names_array, _colors_array[:-1]) ] + [ go.Scatter( x=inner_density_vs_window_distance_single_cells.OFFSETS_X, y=[np.mean(_array) for _array in _single_cells_fiber_densities], name='Single cells', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _single_cells_fiber_densities], 'thickness': 1, 'color': _colors_array[-1] }, mode='markers', marker={ 'size': 15, 'color': _colors_array[-1] }, opacity=0.7 ) ], layout={ 'xaxis': { 'title': 'Window distance (cell diameter)', 'zeroline': False }, 'yaxis': { 'title': 'Fiber density (z-score)', 'range': [-1.7, 13], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 4, 8, 12] }, 'legend': { 'xanchor': 'right', 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2 }, 'shapes': [ { 'type': 'line', 'x0': -0.2, 'y0': -1.5, 'x1': 3.4, 'y1': -1.5, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -0.2, 'y0': -1.5, 'x1': -0.2, 'y1': 13, 'line': { 'color': 'black', 'width': 2 } } ] } ) save.to_html( _fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot' )
def main(): _fiber_densities = compute_data() # plot _fig = go.Figure(data=[ go.Scatter(x=list(range(TIME_POINTS))[::TIME_STEP], y=[np.mean(_array) for _array in _fiber_densities][::TIME_STEP], error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _fiber_densities][::TIME_STEP], 'thickness': 1, 'color': '#005b96' }, mode='markers', marker={ 'size': 15, 'color': '#005b96' }, opacity=0.7, showlegend=False) ], layout={ 'xaxis': { 'title': 'Cell contraction (%)', 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 25, 50] }, 'yaxis': { 'title': 'Fiber density (z-score)', 'range': [-1.7, 6], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 2, 4, 6] }, 'shapes': [{ 'type': 'line', 'x0': -2, 'y0': -1.5, 'x1': 53, 'y1': -1.5, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -2, 'y0': -1.5, 'x1': -2, 'y1': 6, 'line': { 'color': 'black', 'width': 2 } }] }) save.to_html(_fig=_fig, _path=os.path.join(paths.PLOTS, save.get_module_name()), _filename='plot')
def main(): print('Simulations') _simulations_fiber_densities = compute_simulations_data() print('Experiments') _experiments_fiber_densities = compute_experiments_data() # plot _fig = go.Figure( data=[ go.Scatter( x=list(range(SIMULATIONS_TIME_POINTS))[::SIMULATIONS_STEP], y=[np.mean(_array) for _array in _simulations_fiber_densities][::SIMULATIONS_STEP], name='Simulations', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _simulations_fiber_densities][::SIMULATIONS_STEP], 'thickness': 1, 'color': '#005b96' }, mode='markers', marker={ 'size': 15, 'color': '#005b96' }, opacity=0.7 ), go.Scatter( x=np.array(range(EXPERIMENTS_TIME_FRAMES)) * 15, xaxis='x2', y=[np.mean(_array) for _array in _experiments_fiber_densities], name='Experiments', error_y={ 'type': 'data', 'array': [np.std(_array) for _array in _experiments_fiber_densities], 'thickness': 1, 'color': '#ea8500' }, mode='markers', marker={ 'size': 15, 'color': '#ea8500' }, opacity=0.7 ) ], layout={ 'xaxis': { 'title': 'Cell contraction (%)', 'titlefont': { 'color': '#005b96' }, 'tickfont': { 'color': '#005b96' }, 'zeroline': False }, 'xaxis2': { 'title': 'Time (minutes)', 'titlefont': { 'color': '#ea8500' }, 'tickfont': { 'color': '#ea8500' }, # 'anchor': 'free', 'overlaying': 'x', 'side': 'bottom', 'showgrid': False, 'zeroline': False }, 'yaxis': { 'title': 'Fiber density (z-score)', # 'domain': [0.3, 1], 'range': [-1.7, 14], 'zeroline': False, 'tickmode': 'array', 'tickvals': [0, 4, 8, 12] }, 'legend': { 'xanchor': 'left', 'x': 0.1, 'yanchor': 'top', 'bordercolor': 'black', 'borderwidth': 2, 'bgcolor': 'white' }, 'shapes': [ { 'type': 'line', 'x0': -2, 'y0': -1.5, 'x1': 53, 'y1': -1.5, 'line': { 'color': 'black', 'width': 2 } }, { 'type': 'line', 'x0': -2, 'y0': -1.5, 'x1': -2, 'y1': 14, 'line': { 'color': 'black', 'width': 2 } } ] } ) save.to_html( _fig=_fig, _path=os.path.join(paths_lib.PLOTS, save.get_module_name()), _filename='plot' )