def train(logger): """ perform the training routine for a given fold. saves plots and selected parameters to the experiment dir specified in the configs. """ logger.info( 'performing training in {}D over fold {} on experiment {} with model {}' .format(cf.dim, cf.fold, cf.exp_dir, cf.model)) net = model.net(cf, logger).cuda() optimizer = torch.optim.Adam(net.parameters(), lr=cf.learning_rate[0], weight_decay=cf.weight_decay) model_selector = utils.ModelSelector(cf, logger) train_evaluator = Evaluator(cf, logger, mode='train') val_evaluator = Evaluator(cf, logger, mode=cf.val_mode) starting_epoch = 1 # prepare monitoring monitor_metrics, TrainingPlot = utils.prepare_monitoring(cf) if cf.resume_to_checkpoint: starting_epoch, monitor_metrics = utils.load_checkpoint( cf.resume_to_checkpoint, net, optimizer) logger.info('resumed to checkpoint {} at epoch {}'.format( cf.resume_to_checkpoint, starting_epoch)) logger.info('loading dataset and initializing batch generators...') batch_gen = data_loader.get_train_generators(cf, logger) for epoch in range(starting_epoch, cf.num_epochs + 1): logger.info('starting training epoch {}'.format(epoch)) for param_group in optimizer.param_groups: param_group['lr'] = cf.learning_rate[epoch - 1] start_time = time.time() net.train() train_results_list = [] for bix in range(cf.num_train_batches): batch = next(batch_gen['train']) tic_fw = time.time() results_dict = net.train_forward(batch) tic_bw = time.time() optimizer.zero_grad() results_dict['torch_loss'].backward() optimizer.step() logger.info( 'tr. batch {0}/{1} (ep. {2}) fw {3:.3f}s / bw {4:.3f}s / total {5:.3f}s || ' .format(bix + 1, cf.num_train_batches, epoch, tic_bw - tic_fw, time.time() - tic_bw, time.time() - tic_fw) + results_dict['logger_string']) train_results_list.append([results_dict['boxes'], batch['pid']]) monitor_metrics['train']['monitor_values'][epoch].append( results_dict['monitor_values']) _, monitor_metrics['train'] = train_evaluator.evaluate_predictions( train_results_list, monitor_metrics['train']) train_time = time.time() - start_time logger.info('starting validation in mode {}.'.format(cf.val_mode)) with torch.no_grad(): net.eval() if cf.do_validation: val_results_list = [] val_predictor = Predictor(cf, net, logger, mode='val') for _ in range(batch_gen['n_val']): batch = next(batch_gen[cf.val_mode]) if cf.val_mode == 'val_patient': results_dict = val_predictor.predict_patient(batch) elif cf.val_mode == 'val_sampling': results_dict = net.train_forward(batch, is_validation=True) val_results_list.append( [results_dict['boxes'], batch['pid']]) monitor_metrics['val']['monitor_values'][epoch].append( results_dict['monitor_values']) _, monitor_metrics['val'] = val_evaluator.evaluate_predictions( val_results_list, monitor_metrics['val']) model_selector.run_model_selection(net, optimizer, monitor_metrics, epoch) # update monitoring and prediction plots TrainingPlot.update_and_save(monitor_metrics, epoch) epoch_time = time.time() - start_time logger.info( 'trained epoch {}: took {} sec. ({} train / {} val)'.format( epoch, epoch_time, train_time, epoch_time - train_time)) batch = next(batch_gen['val_sampling']) results_dict = net.train_forward(batch, is_validation=True) logger.info('plotting predictions from validation sampling.') plot_batch_prediction(batch, results_dict, cf)
def train(fold): """ perform the training routine for a given fold. saves plots and selected parameters to the experiment dir specified in the configs. """ # set up experiment dirs and copy config file utils.prep_exp(cf) logger = utils.get_logger(cf.exp_dir) logger.info( 'performing training in {d}D over fold {f} on experiment {e}'.format( d=cf.dim, f=fold, e=cf.exp_dir)) logger.info('intitializing tensorflow graph...') tf.reset_default_graph() x = tf.placeholder('float', shape=cf.network_input_shape) y = tf.placeholder('float', shape=cf.network_output_shape) learning_rate = tf.Variable(cf.learning_rate) logits = model.create_UNet(x, cf.n_features_root, cf.n_classes, dim=cf.dim, logger=logger) loss = utils._get_loss(logits, y, cf.n_classes, cf.loss_name, cf.class_weights, cf.dim) predicter = tf.nn.softmax(logits) dice_per_class = utils.get_dice_per_class(logits, y, dim=cf.dim) optimizer = tf.train.AdamOptimizer( learning_rate=learning_rate).minimize(loss) saver = tf.train.Saver() # prepare monitoring metrics = {} metrics['train'] = { 'loss': [None], 'dices': np.zeros(shape=(1, cf.n_classes)) } # CHECK IF THIS WORKS metrics['val'] = { 'loss': [None], 'dices': np.zeros(shape=(1, cf.n_classes)) } best_metrics = { 'loss': [10, 0], 'dices': np.zeros(shape=(cf.n_classes + 1, 2)) } file_name = cf.plot_dir + '/monitor_{}.png'.format(fold) TrainingPlot = TrainingPlot_2Panel(cf.n_epochs, file_name, cf.experiment_name, cf.class_dict) logger.info('initializing batch generators...') batch_gen = data_loader.get_train_generators(cf, fold) logger.info('starting training...') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(cf.n_epochs): start_time = time.time() # perform tranining steps train_loss_running_mean = 0. train_dices_running_batch_mean = np.zeros(shape=(1, cf.n_classes)) for _ in range(cf.n_train_batches): batch = next(batch_gen['train']) train_loss, train_dices, _ = sess.run( (loss, dice_per_class, optimizer), feed_dict={ x: batch['data'], y: batch['seg'] }) train_loss_running_mean += train_loss / cf.n_train_batches train_dices_running_batch_mean += train_dices / cf.n_train_batches metrics['train']['loss'].append(train_loss_running_mean) metrics['train']['dices'] = np.append( metrics['train']['dices'], train_dices_running_batch_mean, axis=0) # perform validation val_loss_running_mean = 0. val_dices_running_batch_mean = np.zeros(shape=(1, cf.n_classes)) for _ in range(cf.n_val_batches): batch = next(batch_gen['val']) val_loss, val_dices = sess.run((loss, dice_per_class), feed_dict={ x: batch['data'], y: batch['seg'] }) val_loss_running_mean += val_loss / cf.n_val_batches val_dices_running_batch_mean[0] += val_dices / cf.n_val_batches metrics['val']['loss'].append(val_loss_running_mean) metrics['val']['dices'] = np.append(metrics['val']['dices'], val_dices_running_batch_mean, axis=0) # evaluate epoch val_loss = metrics['val']['loss'][-1] val_dices = metrics['val']['dices'][-1] if val_loss < best_metrics['loss'][0]: best_metrics['loss'][0] = val_loss best_metrics['loss'][1] = epoch for cl in range(cf.n_classes): if val_dices[cl] > best_metrics['dices'][cl][0]: best_metrics['dices'][cl][0] = val_dices[cl] best_metrics['dices'][cl][1] = epoch # selection criterion is the averaged dice over both foreground classes fg_dice = np.mean(val_dices[1:]) if fg_dice > best_metrics['dices'][cf.n_classes][0]: best_metrics['dices'][cf.n_classes][0] = fg_dice best_metrics['dices'][cf.n_classes][1] = epoch saver.save(sess, os.path.join(cf.exp_dir, 'params_{}'.format(fold))) # update monitoring and prediction plots TrainingPlot.update_and_save(metrics, best_metrics) batch = next(batch_gen['val']) correct_prediction = np.argmax(sess.run( (predicter), feed_dict={x: batch['data']}), axis=-1) outfile = cf.plot_dir + '/pred_example_{}.png'.format( fold) #set fold -> epoch to keep plots from all epochs plot_batch_prediction(batch['data'], batch['seg'], correct_prediction, cf.n_classes, outfile, dim=cf.dim) logger.info( 'trained epoch {e}: val_loss {l}, val_dices: {d}, took {t} sec.' .format(e=epoch, l=np.round(val_loss, 3), d=val_dices, t=np.round(time.time() - start_time, 0)))
def train(logger): """ perform the training routine for a given fold. saves plots and selected parameters to the experiment dir specified in the configs. """ logger.info( 'performing training in {}D over fold {} on experiment {} with model {}' .format(cf.dim, cf.fold, cf.exp_dir, cf.model)) writer = SummaryWriter(os.path.join(cf.exp_dir, 'tensorboard')) net = model.net(cf, logger).cuda() #optimizer = torch.optim.Adam(net.parameters(), lr=cf.learning_rate[0], weight_decay=cf.weight_decay) optimizer = torch.optim.Adam(net.parameters(), lr=cf.initial_learning_rate, weight_decay=cf.weight_decay) model_selector = utils.ModelSelector(cf, logger) train_evaluator = Evaluator(cf, logger, mode='train') val_evaluator = Evaluator(cf, logger, mode=cf.val_mode) #val_sampling starting_epoch = 1 # prepare monitoring if cf.resume_to_checkpoint: #default: False lastepochpth = cf.resume_to_checkpoint + 'last_checkpoint/' best_epoch = np.load(lastepochpth + 'epoch_ranking.npy')[0] df = open(lastepochpth + 'monitor_metrics.pickle', 'rb') monitor_metrics = pickle.load(df) df.close() starting_epoch = utils.load_checkpoint(lastepochpth, net, optimizer) logger.info('resumed to checkpoint {} at epoch {}'.format( cf.resume_to_checkpoint, starting_epoch)) num_batch = starting_epoch * cf.num_train_batches + 1 num_val = starting_epoch * cf.num_val_batches + 1 else: monitor_metrics = utils.prepare_monitoring(cf) num_batch = 0 #for show loss num_val = 0 logger.info('loading dataset and initializing batch generators...') batch_gen = data_loader.get_train_generators(cf, logger) best_train_recall, best_val_recall = 0, 0 lr_now = cf.initial_learning_rate for epoch in range(starting_epoch, cf.num_epochs + 1): logger.info('starting training epoch {}'.format(epoch)) for param_group in optimizer.param_groups: #param_group['lr'] = cf.learning_rate[epoch - 1] print('lr_now', lr_now) lr_next = utils.learning_rate_decreasing( cf, epoch, lr_now, mode='step') #cf.learning_rate[epoch - 1] print('lr_next', lr_next) param_group[ 'lr'] = lr_next #learning_rate_decreasing(cf,epoch,lr_now,mode='step')#cf.learning_rate[epoch - 1] lr_now = lr_next start_time = time.time() net.train() train_results_list = [] #this batch train_results_list_seg = [] for bix in range(cf.num_train_batches): #200 num_batch += 1 batch = next( batch_gen['train'] ) #data,seg,pid,class_target,bb_target,roi_masks,roi_labels for ii, i in enumerate(batch['roi_labels']): if i[0] > 0: batch['roi_labels'][ii] = [1] else: batch['roi_labels'][ii] = [-1] tic_fw = time.time() results_dict = net.train_forward(batch) tic_bw = time.time() optimizer.zero_grad() results_dict['torch_loss'].backward() #total loss optimizer.step() if (num_batch) % cf.show_train_images == 0: fig = plot_batch_prediction(batch, results_dict, cf, 'train') writer.add_figure('/Train/results', fig, num_batch) fig.clear() print('model', cf.exp_dir.split('/')[-2]) logger.info( 'tr. batch {0}/{1} (ep. {2}) fw {3:.3f}s / bw {4:.3f}s / total {5:.3f}s || ' .format(bix + 1, cf.num_train_batches, epoch, tic_bw - tic_fw, time.time() - tic_bw, time.time() - tic_fw)) #writer.add_scalar('Train/total_loss',results_dict['torch_loss'].item(),num_batch) #writer.add_scalar('Train/rpn_class_loss',results_dict['monitor_losses']['rpn_class_loss'],num_batch) #writer.add_scalar('Train/rpn_bbox_loss',results_dict['monitor_losses']['rpn_bbox_loss'],num_batch) #writer.add_scalar('Train/mrcnn_class_loss',results_dict['monitor_losses']['mrcnn_class_loss'],num_batch) #writer.add_scalar('Train/mrcnn_bbox_loss',results_dict['monitor_losses']['mrcnn_bbox_loss'],num_batch) #writer.add_scalar('Train/mrcnn_mask_loss',results_dict['monitor_losses']['mrcnn_mask_loss'],num_batch) #writer.add_scalar('Train/seg_dice_loss',results_dict['monitor_losses']['seg_loss_dice'],num_batch) #writer.add_scalar('Train/fusion_dice_loss',results_dict['monitor_losses']['fusion_loss_dice'],num_batch) train_results_list.append([results_dict['boxes'], batch['pid']]) #just gt and det monitor_metrics['train']['monitor_values'][epoch].append( results_dict['monitor_losses']) count_train = train_evaluator.evaluate_predictions(train_results_list, epoch, cf, flag='train') precision = count_train[0] / (count_train[0] + count_train[2] + 0.01) recall = count_train[0] / (count_train[3]) print('tp_patient {}, tp_roi {}, fp_roi {}, total_num {}'.format( count_train[0], count_train[1], count_train[2], count_train[3])) print('precision:{}, recall:{}'.format(precision, recall)) monitor_metrics['train']['train_recall'].append(recall) monitor_metrics['train']['train_percision'].append(precision) writer.add_scalar('Train/train_precision', precision, epoch) writer.add_scalar('Train/train_recall', recall, epoch) train_time = time.time() - start_time logger.info('starting validation in mode {}.'.format(cf.val_mode)) with torch.no_grad(): net.eval() if cf.do_validation: val_results_list = [] val_predictor = Predictor(cf, net, logger, mode='val') dice_val_seg, dice_val_mask, dice_val_fusion = [], [], [] for _ in range(batch_gen['n_val']): #50 num_val += 1 batch = next(batch_gen[cf.val_mode]) print('eval', batch['pid']) for ii, i in enumerate(batch['roi_labels']): if i[0] > 0: batch['roi_labels'][ii] = [1] else: batch['roi_labels'][ii] = [-1] if cf.val_mode == 'val_patient': results_dict = val_predictor.predict_patient( batch) #result of one patient elif cf.val_mode == 'val_sampling': results_dict = net.train_forward(batch, is_validation=True) if (num_val) % cf.show_val_images == 0: fig = plot_batch_prediction(batch, results_dict, cf, cf.val_mode) writer.add_figure('Val/results', fig, num_val) fig.clear() # compute dice for vnet this_batch_seg_label = torch.FloatTensor( mutils.get_one_hot_encoding( batch['seg'], cf.num_seg_classes + 1)).cuda() if cf.fusion_feature_method == 'after': this_batch_dice_seg = mutils.dice_val( results_dict['seg_logits'], this_batch_seg_label) else: this_batch_dice_seg = mutils.dice_val( F.softmax(results_dict['seg_logits'], dim=1), this_batch_seg_label) dice_val_seg.append(this_batch_dice_seg) # compute dice for mask #mask_map = torch.from_numpy(results_dict['seg_preds']).cuda() if cf.fusion_feature_method == 'after': this_batch_dice_mask = mutils.dice_val( results_dict['seg_preds'], this_batch_seg_label) else: this_batch_dice_mask = mutils.dice_val( F.softmax(results_dict['seg_preds'], dim=1), this_batch_seg_label) dice_val_mask.append(this_batch_dice_mask) # compute dice for fusion if cf.fusion_feature_method == 'after': this_batch_dice_fusion = mutils.dice_val( results_dict['fusion_map'], this_batch_seg_label) else: this_batch_dice_fusion = mutils.dice_val( F.softmax(results_dict['fusion_map'], dim=1), this_batch_seg_label) dice_val_fusion.append(this_batch_dice_fusion) val_results_list.append( [results_dict['boxes'], batch['pid']]) monitor_metrics['val']['monitor_values'][epoch].append( results_dict['monitor_values']) count_val = val_evaluator.evaluate_predictions( val_results_list, epoch, cf, flag='val') precision = count_val[0] / (count_val[0] + count_val[2] + 0.01) recall = count_val[0] / (count_val[3]) print( 'tp_patient {}, tp_roi {}, fp_roi {}, total_num {}'.format( count_val[0], count_val[1], count_val[2], count_val[3])) print('precision:{}, recall:{}'.format(precision, recall)) val_dice_seg = sum(dice_val_seg) / float(len(dice_val_seg)) val_dice_mask = sum(dice_val_mask) / float(len(dice_val_mask)) val_dice_fusion = sum(dice_val_fusion) / float( len(dice_val_fusion)) monitor_metrics['val']['val_recall'].append(recall) monitor_metrics['val']['val_precision'].append(precision) monitor_metrics['val']['val_dice_seg'].append(val_dice_seg) monitor_metrics['val']['val_dice_mask'].append(val_dice_mask) monitor_metrics['val']['val_dice_fusion'].append( val_dice_fusion) writer.add_scalar('Val/val_precision', precision, epoch) writer.add_scalar('Val/val_recall', recall, epoch) writer.add_scalar('Val/val_dice_seg', val_dice_seg, epoch) writer.add_scalar('Val/val_dice_mask', val_dice_mask, epoch) writer.add_scalar('Val/val_dice_fusion', val_dice_fusion, epoch) model_selector.run_model_selection(net, optimizer, monitor_metrics, epoch) # update monitoring and prediction plots #TrainingPlot.update_and_save(monitor_metrics, epoch) epoch_time = time.time() - start_time logger.info( 'trained epoch {}: took {} sec. ({} train / {} val)'.format( epoch, epoch_time, train_time, epoch_time - train_time)) writer.close()
def test(folds): """ create and evaluate predictions for the held-out test set. Predictions can be averaged over several models trained during cross validation (specified by "folds"). Predictions are further averaged over 4 different input orientations obtained by mirroring (test-time data augmentation). The averaged softmax predictions for each patient are saved out for further statistics and plotted to the cf.test_dir and the final dice scores per class are printed. """ logger = utils.get_logger(cf.exp_dir) logger.info( 'performing testing in {d}D over fold(s) {f} on experiment {e}'.format( d=cf.dim, f=folds, e=cf.exp_dir)) logger.info('intitializing tensorflow graph...') tf.reset_default_graph() x = tf.placeholder('float', shape=cf.network_input_shape) logits = model.create_UNet(x, cf.n_features_root, cf.n_classes, dim=cf.dim, logger=logger) predicter = tf.nn.softmax(logits) saver = tf.train.Saver() logger.info('intitializing test generator...') test_data_dict = data_loader.get_test_generator(cf) pred_dict = {key: [] for key in test_data_dict.keys()} logger.info('starting testing...') with tf.Session() as sess: for fold in folds: sess.run(tf.global_variables_initializer()) saver.restore(sess, os.path.join(cf.exp_dir, 'params_{}'.format(fold))) for ix, pid in enumerate(test_data_dict.keys()): patient_fold_prediction = [] test_arr = test_data_dict[pid]['data'] patient_fold_prediction.append( sess.run(predicter, feed_dict={x: test_arr})) test_arr = np.flip(test_data_dict[pid]['data'], axis=cf.dim - 1) patient_fold_prediction.append( np.flip(sess.run(predicter, feed_dict={x: test_arr}), axis=cf.dim - 1)) test_arr = np.flip(test_data_dict[pid]['data'], axis=cf.dim) patient_fold_prediction.append( np.flip(sess.run(predicter, feed_dict={x: test_arr}), axis=cf.dim)) test_arr = np.flip(np.flip(test_data_dict[pid]['data'], axis=cf.dim - 1), axis=cf.dim) patient_fold_prediction.append( np.flip(np.flip(sess.run(predicter, feed_dict={x: test_arr}), axis=cf.dim - 1), axis=cf.dim)) pred_dict[pid].append( np.mean(np.array(patient_fold_prediction), axis=0)) logger.info('evaluating averaged predictions...') final_dices = [] for ix, pid in enumerate(test_data_dict.keys()): final_pred_soft = np.mean(np.array(pred_dict[pid]), axis=0) final_pred_correct = np.argmax(final_pred_soft, axis=-1) seg = test_data_dict[pid]['seg'] avg_dices = utils.numpy_volume_dice_per_class( utils.get_one_hot_prediction(final_pred_correct, cf.n_classes), seg) final_dices.append(avg_dices) logger.info('avg dices for patient {p} over {a} preds: {d}'.format( p=pid, a=len(pred_dict[pid]), d=avg_dices)) np.save(os.path.join(cf.test_dir, '{}_pred_final.npy'.format(pid)), np.concatenate((final_pred_soft[np.newaxis], seg[np.newaxis]))) plot_batch_prediction(test_data_dict[pid]['data'], seg, final_pred_correct, cf.n_classes, os.path.join(cf.test_dir, '{}_pred_final.png'.format(pid)), dim=cf.dim) logger.info('final dices mean: {}'.format(np.mean(final_dices, axis=0))) logger.info('final dices std: {}'.format(np.std(final_dices, axis=0)))
def train(logger): """ perform the training routine for a given fold. saves plots and selected parameters to the experiment dir specified in the configs. """ logger.info('performing training in {}D over fold {} on experiment {} with model {}'.format( cf.dim, cf.fold, cf.exp_dir, cf.model)) writer = SummaryWriter(os.path.join(cf.exp_dir,'tensorboard')) net = model.net(cf, logger).cuda() #print('finish initial network') optimizer = torch.optim.Adam(net.parameters(), lr=cf.learning_rate[0], weight_decay=cf.weight_decay) #print('finish initial optimizer') model_selector = utils.ModelSelector(cf, logger) train_evaluator = Evaluator(cf, logger, mode='train') val_evaluator = Evaluator(cf, logger, mode=cf.val_mode)#val_sampling starting_epoch = 1 # prepare monitoring #monitor_metrics, TrainingPlot = utils.prepare_monitoring(cf) #print('monitor_metrics',monitor_metrics) if cf.resume_to_checkpoint:#default: False best_epoch = np.load(cf.resume_to_checkpoint + 'epoch_ranking.npy')[0] df = open(cf.resume_to_checkpoint+'monitor_metrics.pickle','rb') monitor_metrics = pickle.load(df) df.close() starting_epoch = utils.load_checkpoint(cf.resume_to_checkpoint, net, optimizer) logger.info('resumed to checkpoint {} at epoch {}'.format(cf.resume_to_checkpoint, starting_epoch)) num_batch = starting_epoch * cf.num_train_batches+1 num_val = starting_epoch * cf.num_val_batches+1 else: monitor_metrics = utils.prepare_monitoring(cf) num_batch = 0#for show loss num_val = 0 logger.info('loading dataset and initializing batch generators...') batch_gen = data_loader.get_train_generators(cf, logger) #for k in batch_gen.keys(): # print('k in batch_gen are {}'.format(k)) best_train_recall,best_val_recall = 0,0 for epoch in range(starting_epoch, cf.num_epochs + 1): logger.info('starting training epoch {}'.format(epoch)) for param_group in optimizer.param_groups: param_group['lr'] = cf.learning_rate[epoch - 1] start_time = time.time() net.train() train_results_list = []#this batch #print('net.train()') for bix in range(cf.num_train_batches):#200 num_batch += 1 batch = next(batch_gen['train'])#data,seg,pid,class_target,bb_target,roi_masks,roi_labels #print('training',batch['pid']) for ii,i in enumerate(batch['roi_labels']): if i[0] > 0: batch['roi_labels'][ii] = [1] else: batch['roi_labels'][ii] = [-1] #for k in batch.keys(): # print('k',k) tic_fw = time.time() results_dict = net.train_forward(batch) tic_bw = time.time() optimizer.zero_grad() results_dict['torch_loss'].backward()#total loss optimizer.step() if (num_batch) % cf.show_train_images == 0: fig = plot_batch_prediction(batch, results_dict, cf,'train') writer.add_figure('/Train/results',fig,num_batch) fig.clear() logger.info('tr. batch {0}/{1} (ep. {2}) fw {3:.3f}s / bw {4:.3f}s / total {5:.3f}s || ' .format(bix + 1, cf.num_train_batches, epoch, tic_bw - tic_fw, time.time() - tic_bw, time.time() - tic_fw) + results_dict['logger_string']) writer.add_scalar('Train/total_loss',results_dict['torch_loss'].item(),num_batch) writer.add_scalar('Train/rpn_class_loss',results_dict['monitor_losses']['rpn_class_loss'],num_batch) writer.add_scalar('Train/rpn_bbox_loss',results_dict['monitor_losses']['rpn_bbox_loss'],num_batch) writer.add_scalar('Train/mrcnn_class_loss',results_dict['monitor_losses']['mrcnn_class_loss'],num_batch) writer.add_scalar('Train/mrcnn_bbox_loss',results_dict['monitor_losses']['mrcnn_bbox_loss'],num_batch) if 'mrcnn' in cf.model_path: writer.add_scalar('Train/mrcnn_mask_loss',results_dict['monitor_losses']['mrcnn_mask_loss'],num_batch) if 'ufrcnn' in cf.model_path: writer.add_scalar('Train/seg_dice_loss',results_dict['monitor_losses']['seg_loss_dice'],num_batch) train_results_list.append([results_dict['boxes'], batch['pid']])#just gt and det monitor_metrics['train']['monitor_values'][epoch].append(results_dict['monitor_values']) count_train = train_evaluator.evaluate_predictions(train_results_list,epoch,cf,flag = 'train') print('tp_patient {}, tp_roi {}, fp_roi {}, total_num {}'.format(count_train[0],count_train[1],count_train[2],count_train[3])) precision = count_train[0]/ (count_train[0]+count_train[2]+0.01) recall = count_train[0]/ (count_train[3]) print('precision:{}, recall:{}'.format(precision,recall)) monitor_metrics['train']['train_recall'].append(recall) monitor_metrics['train']['train_percision'].append(precision) writer.add_scalar('Train/train_precision',precision,epoch) writer.add_scalar('Train/train_recall',recall,epoch) train_time = time.time() - start_time print('*'*50 + 'finish epoch {}'.format(epoch)) logger.info('starting validation in mode {}.'.format(cf.val_mode)) with torch.no_grad(): net.eval() if cf.do_validation: val_results_list = [] val_predictor = Predictor(cf, net, logger, mode='val') dice_val = [] for _ in range(batch_gen['n_val']):#50 num_val += 1 batch = next(batch_gen[cf.val_mode]) #print('valing',batch['pid']) for ii,i in enumerate(batch['roi_labels']): if i[0] > 0: batch['roi_labels'][ii] = [1] else: batch['roi_labels'][ii] = [-1] if cf.val_mode == 'val_patient': results_dict = val_predictor.predict_patient(batch) elif cf.val_mode == 'val_sampling': results_dict = net.train_forward(batch, is_validation=True) if (num_val) % cf.show_val_images == 0: fig = plot_batch_prediction(batch, results_dict, cf,'val') writer.add_figure('Val/results',fig,num_val) fig.clear() this_batch_seg_label = torch.FloatTensor(mutils.get_one_hot_encoding(batch['seg'], cf.num_seg_classes)).cuda() this_batch_dice = DiceLoss() dice = 1- this_batch_dice(F.softmax(results_dict['seg_logits'],dim=1),this_batch_seg_label) #this_batch_dice = batch_dice(F.softmax(results_dict['seg_logits'],dim = 1),this_batch_seg_label,showdice = True) dice_val.append(dice) val_results_list.append([results_dict['boxes'], batch['pid']]) monitor_metrics['val']['monitor_values'][epoch].append(results_dict['monitor_values']) count_val = val_evaluator.evaluate_predictions(val_results_list,epoch,cf,flag = 'val') print('tp_patient {}, tp_roi {}, fp_roi {}, total_num {}'.format(count_val[0],count_val[1],count_val[2],count_val[3])) precision = count_val[0]/ (count_val[0]+count_val[2]+0.01) recall = count_val[0]/ (count_val[3]) print('precision:{}, recall:{}'.format(precision,recall)) monitor_metrics['val']['val_recall'].append(recall) monitor_metrics['val']['val_percision'].append(precision) writer.add_scalar('Val/val_precision',precision,epoch) writer.add_scalar('Val/val_recall',recall,epoch) writer.add_scalar('Val/val_dice',sum(dice_val)/float(len(dice_val)),epoch) model_selector.run_model_selection(net, optimizer, monitor_metrics, epoch) # update monitoring and prediction plots #TrainingPlot.update_and_save(monitor_metrics, epoch) epoch_time = time.time() - start_time logger.info('trained epoch {}: took {} sec. ({} train / {} val)'.format( epoch, epoch_time, train_time, epoch_time-train_time)) writer.close()