예제 #1
0
 def f(mode, fname):
     wf = functools.partial(lambda z, x: wavefs[mode - 1](x, z), 0)
     (fig, ax) = plotting.setup_figure_standard(title=u'Argand diagram for n=%i mode' % mode,
         xlabel=ur'$\mathrm{Re}\left((\psi\left(x\right)\right)$',
         ylabel=ur'$\mathrm{Im}\left((\psi\left(x\right)\right)$')
     plotting.plot_argand(ax, wf, waveguide.slab_gap)
     plotting.save_figure(fig, fname)
예제 #2
0
    def f(mode, fname):
        wavefs_propagated = []
        labels = []

        for d in dists:
            wavefs_propagated.append(functools.partial(lambda z,x: wavefs[mode-1](x,z), d))
            labels.append('z=%.3fm' % d)

        (fig, ax) = plotting.setup_figure_standard(title=u'Intensity for n=%i mode' % mode,
            xlabel=u'Distance accross waveguide (m)',
            ylabel=u'Wavefunction intensity (arbitrary units)')
        #fig.hold(True)

        colours = ['blue', 'orange', 'green', 'purple', 'grey', 'lime', 'cyan', 'yellow', 'black', 'navy', 'teal']
        colours.reverse()
        ax.hold(True)
        d = []
        for (wf, lbl) in zip(wavefs_propagated, labels):
            d.append(plotting.plot_intensity(ax, wf, waveguide.slab_gap, colour=colours.pop(), label=lbl))
        ax.hold(False)

        if len(dists) != 1:
            ax.legend(loc='upper left', prop={'size' : 10})

        plotting.save_figure(fig, fname)
        i = 1
        for data in d:
            sio.savemat(fname + str(i) + '.mat',data)
            i += 1
예제 #3
0
 def f(mode, fname):
     wf = functools.partial(lambda z,x: wavefs[mode-1](x,z), 0)
     (fig, ax) = plotting.setup_figure_standard(title=u'Poynting vector for n=%i mode' % mode,
         xlabel=u'Distance accross waveguide (m)',
         ylabel=u'Energy flow (right is +)')
     d = plotting.plot_poynting_vector(ax, wf, waveguide.slab_gap)
     plotting.save_figure(fig, fname)
     sio.savemat(fname + '.mat', d)
예제 #4
0
    def f(mode, fname):
        kx = kxs[mode-1]
        inwave = lambda x: np.exp(1j*kx.real*x)
        splitter = splitters.ModeSplitter(inwave, wavefs)
        cm = splitter.get_coupling_constants()
        wffull = splitter.get_wavefunction(cm)
        wf = lambda x: wffull(x, 0.005)

        #(fig, reax, imax) = plotting.setup_figure_topbottom(
        #    title=ur'Wavefunction for incidence angle on n=%i mode' % mode,
        #    xlabel=u'Distance accross waveguide (m)',
        #    ylabel=u'Wavefunction (arbitrary units)')
        (fig, ax) = plotting.setup_figure_standard(
            title=ur'Wavefunction for incidence angle on n=%i mode' % mode,
            xlabel=u'Distance accross waveguide (m)',
            ylabel=u'Wavefunction (arbitrary units)')
        #plotting.plot_wavefunction(reax, imax, wf, waveguide.slab_gap)
        plotting.plot_intensity(ax, wf, waveguide.slab_gap)
        plotting.save_figure(fig, fname)

        coefftable[mode-1, :] = np.abs(cm)**2
예제 #5
0
def sp_plot_coupled_map(waveguide, wavelength, angle, zlimits, out_file, verbose=False):
    """
    This method produces a plot of the intensity map in the waveguide when it is illuminated by a plane wave
    of arbitrary angle

    @param waveguide: The waveguide being illuminated
    @type waveguide: PlanarWaveguide
    @param wavelength: The wavelength of light illuminating the waveguide
    @type wavelength: float
    @param angle: The angle of the plane waves striking the waveguide, in radian
    @type angle: float
    @param zlimits: The z-axis limits within which to plot the wavefunction
    @type zlimits: tuple
    @param out_file: The filename to write output to
    @type out_file: str
    @param verbose: Whether or not to give verbose output
    @type verbose: bool
    @return: None
    """

    #do the decomposition
    solver = modesolvers.ExpLossySolver(waveguide, wavelength)
    kxs = solver.solve_transcendental(verbose=verbose)
    wavefs = solver.get_wavefunctions(kxs, verbose=verbose)

    k = 2 * np.pi / wavelength
    inkx = k * np.sin(angle)
    inwave = lambda x: np.exp(1j * inkx * x)

    splitter = splitters.ModeSplitter(inwave, wavefs)
    cm = splitter.get_coupling_constants()
    wffull = splitter.get_wavefunction(cm)
    (fig, ax) = plotting.setup_figure_standard(
        title=ur'Intensity for incidence angle %f rads' % angle,
        xlabel=u'Longitudinal distance accross waveguide (m)',
        ylabel=u'Transverse distance accross waveguide (m)')
    (X,Y,Z) = plotting.plot_intensity_map(ax, wffull, waveguide.slab_gap, zlimits)
    plotting.save_figure(fig, unicode(out_file))
    sio.savemat(out_file + '.mat', {'inten' : Z, 'X' : X, 'Y' : Y})
예제 #6
0
def sp_plot_total_coupling(waveguide, wavelength, out_file, verbose=False):
    solver = modesolvers.ExpLossySolver(waveguide, wavelength)
    kxs = solver.solve_transcendental(verbose=verbose)
    wavefs = solver.get_wavefunctions(kxs, verbose=verbose)

    tirang = waveguide.critical_angle(wavelength)
    angs = np.linspace(0, tirang+0.1*tirang, num=100)
    intensity = np.zeros(100)

    k = 2*np.pi/wavelength

    pb = progressbar.ProgressBar(widgets=['Calculating Integrals: ', progressbar.Percentage(), progressbar.Bar()],
        maxval=len(angs))
    if verbose:
        pb.start()

    for (n,a) in enumerate(angs):
        kx = np.sin(a)*k
        inwave = lambda x: np.exp(1j*kx*x)

        splitter = splitters.ModeSplitter(inwave, wavefs)
        cm = splitter.get_coupling_constants()
        wffull = splitter.get_wavefunction(cm)
        wf = lambda x: wffull(x, 0)
        integrand = lambda x: np.abs(wf(x))**2
        area = integrate.quad(integrand, -1e-6, 1e-6, limit=3000)[0]
        intensity[n] = area

        if verbose:
            pb.update(n)

    (fig, ax) = plotting.setup_figure_standard(title=u'Coupling efficiency of waveguide',
        xlabel=u'Angle of radiation incidence (rads)',
        ylabel=u'Intensity Coupled')
    ax.plot(angs, intensity)
    plotting.save_figure(fig, out_file)
    sio.savemat(out_file + '.mat', {'angs' : angs, 'Intensity' : intensity})
예제 #7
0
def ic_far_field(waveguide, sourcecls, angle, nwaves, out_file, verbose=False):
    """Pretty shameless copy-paste of the exit_surface method follows"""
    source = sourcecls(angle)
    intensity = np.zeros(500)
    xv = np.linspace(-waveguide.slab_gap, waveguide.slab_gap, 500)

    #let's see if our source is monochromatic
    prevval = source.get_wave()[1]
    ismonochrome = True
    for i in range(10):
        newval = source.get_wave()[1]
        ismonochrome = ismonochrome and prevval == newval
        prevval = newval
    if ismonochrome:
        #get this done once
        solver = modesolvers.ExpLossySolver(waveguide, prevval)
        kx = solver.solve_transcendental(verbose=False) #this'll get real noisy otherwise
        modewaves = solver.get_wavefunctions(kx, verbose=False)

    pb = progressbar.ProgressBar(widgets=['Performing Incoherent Sum: ', progressbar.Percentage(), progressbar.Bar()],
        maxval=nwaves)
    if verbose:
        pb.start()

    #We need to iterate over many waves, summing their intensity
    for i in xrange(nwaves):
        #get a wave
        (wave, wl) = source.get_wave()
        inwave = lambda x: wave(x, 0) #only intersted in incidence surface
        #solve modes for this wl
        if not ismonochrome:
            solver = modesolvers.ExpLossySolver(waveguide, wl)
            kx = solver.solve_transcendental(verbose=False) #this'll get real noisy otherwise
            modewaves = solver.get_wavefunctions(kx, verbose=False)
            #split wave into modes
        splitter = splitters.ModeSplitter(inwave, modewaves)
        cm = splitter.get_coupling_constants()
        wffull = splitter.get_wavefunction(cm)
        #get wavefunction at exit surface
        exitf = lambda x: wffull(x, waveguide.length)
        #incoherently add exitf to the picture so far
        exitvf = np.vectorize(exitf)
        exitdata = exitvf(xv)
        farfield = fft.fft(exitdata)
        intensity = intensity + np.abs(fft.fftshift(farfield))**2
        if verbose:
            pb.update(i + 1)
            #now plot it
    (fig, ax) = plotting.setup_figure_standard(
        title=ur'Propagated Intensity',
        xlabel=u'Intensity at screen (arbitrary units)',
        ylabel=u'Relative transverse distance on screen (m)')
    ax.plot(xv, intensity, color='blue', linestyle='-', marker=None, antialiased=True)
    ax.set_xlim((-waveguide.slab_gap, waveguide.slab_gap))
    ax.set_ylim((np.min(intensity) - 0.1 * np.abs(np.min(intensity)),
                 np.max(intensity) + 0.1 * np.abs(np.max(intensity))))
    plotting.shade_waveguide(ax, waveguide.slab_gap)

    #Consider only the rightmost 4/5ths when setting the intensity
    #lowest = np.min(intensity[:, 360:])
    #highest = np.max(intensity[:, 360:])

    #pcm = ax.pcolor(X, Y, intensity, cmap=matplotlib.cm.jet)
    #ax.get_figure().colorbar(pcm, ax=ax, use_gridspec=True)
    #ax.set_xlim((0, waveguide.length))
    #ax.set_ylim((-waveguide.slab_gap, waveguide.slab_gap))

    #bang down a slightly different guideline for the waveguide limits
    #topr = Rectangle((0, waveguide.slab_gap / 2), waveguide.length, waveguide.slab_gap / 2, hatch='\\', fill=False)
    #bottomr = Rectangle((0, -waveguide.slab_gap), waveguide.length, waveguide.slab_gap / 2, hatch='/', fill=False)
    #ax.add_patch(topr)
    #ax.add_patch(bottomr)
    plotting.save_figure(fig, unicode(out_file))
    #save the data too
    sio.savemat(out_file + '.mat', {'intensity': intensity, 'xv' : xv})
예제 #8
0
def ic_exit_surface(waveguide, sourcecls, angle, nwaves, out_file, verbose=False):
    """
    This method implements incoherent --exitsurface behaviour
    It plots the intensity profile at the exit surface of the waveguide when it is illuminated with incoherent
    radiation from source at an angle of angle

    @param waveguide: The waveguide being illuminated
    @type waveguide: PlanarWaveguide
    @param source: The characteristics of the source that is generating the radiation hitting this waveguide
    @type source: type
    @param angle: The angle the waveguide is tilted at with respect to the source
    @type angle: float
    @param nwaves: The number of waves to contribute to the plot of the exit surface
    @type nwaves: int
    @param out_file: The file to write the resultant plot to
    @type out_file: str
    @param verbose: Whether or not to give verbose output
    @type verbose: bool
    @return: None
    """

    source = sourcecls(angle)
    intensity = np.zeros((250,500))
    (X, Y) = np.meshgrid(np.linspace(0, waveguide.length, 500),
        np.linspace(-waveguide.slab_gap, waveguide.slab_gap, 250))

    #let's see if our source is monochromatic
    prevval = source.get_wave()[1]
    ismonochrome = True
    for i in range(10):
        newval = source.get_wave()[1]
        ismonochrome = ismonochrome and prevval == newval
        prevval = newval
    if ismonochrome:
        #get this done once
        solver = modesolvers.ExpLossySolver(waveguide, prevval)
        kx = solver.solve_transcendental(verbose=False) #this'll get real noisy otherwise
        modewaves = solver.get_wavefunctions(kx, verbose=False)

    pb = progressbar.ProgressBar(widgets=['Performing Incoherent Sum: ', progressbar.Percentage(), progressbar.Bar()],
        maxval=nwaves)
    if verbose:
        pb.start()

    #We need to iterate over many waves, summing their intensity
    for i in xrange(nwaves):
        #get a wave
        (wave, wl) = source.get_wave()
        inwave = lambda x: wave(x, 0) #only intersted in incidence surface
        #solve modes for this wl
        if not ismonochrome:
            solver = modesolvers.ExpLossySolver(waveguide, wl)
            kx = solver.solve_transcendental(verbose=False) #this'll get real noisy otherwise
            modewaves = solver.get_wavefunctions(kx, verbose=False)
        #split wave into modes
        splitter = splitters.ModeSplitter(inwave, modewaves)
        cm = splitter.get_coupling_constants()
        wffull = splitter.get_wavefunction(cm)
        #get wavefunction at exit surface
        exitf = lambda x,y: np.abs(wffull(y, x))**2
        #incoherently add exitf to the picture so far
        exitvf = np.vectorize(exitf)
        intensity = intensity + exitvf(X,Y)
        if verbose:
            pb.update(i+1)
    #now plot it
    (fig, ax) = plotting.setup_figure_standard(
        title=ur'Exit surface intensity',
        xlabel=u'Longitudinal distance across waveguide (m)',
        ylabel=u'Transverse distance across waveguide (m)')
    #ax.plot(x, intensity, color='blue', linestyle='-', marker=None, antialiased=True)
    #ax.set_xlim((-waveguide.slab_gap, waveguide.slab_gap))
    #ax.set_ylim((np.min(intensity) - 0.1 * np.abs(np.min(intensity)),
    #             np.max(intensity) + 0.1 * np.abs(np.max(intensity))))
    #plotting.shade_waveguide(ax, waveguide.slab_gap)

    #Consider only the rightmost 4/5ths when setting the intensity
    #lowest = np.min(intensity[:, 360:])
    #highest = np.max(intensity[:, 360:])

    pcm = ax.pcolor(X, Y, intensity, cmap=matplotlib.cm.jet)
    ax.get_figure().colorbar(pcm, ax=ax, use_gridspec=True)
    ax.set_xlim((0, waveguide.length))
    ax.set_ylim((-waveguide.slab_gap, waveguide.slab_gap))

    #bang down a slightly different guideline for the waveguide limits
    topr = Rectangle((0, waveguide.slab_gap / 2), waveguide.length, waveguide.slab_gap / 2, hatch='\\', fill=False)
    bottomr = Rectangle((0, -waveguide.slab_gap), waveguide.length, waveguide.slab_gap / 2, hatch='/', fill=False)
    ax.add_patch(topr)
    ax.add_patch(bottomr)
    plotting.save_figure(fig, unicode(out_file))
    #save the data too
    sio.savemat(out_file+'.mat', {'intensity':intensity, 'X':X, 'Y':Y})