# Just fit ratio (intercept is 0) pars_ratio, pars_ratio_ci, sampler_ratio = \ bayes_linear(tab['sigma_HI'][good_pts], tab['sigma_CO'][good_pts], tab['sigma_stderr_HI'][good_pts], tab['sigma_stderr_CO'][good_pts], nBurn=500, nSample=5000, nThin=1, fix_intercept=True) slope_ratio = pars_ratio[0] slope_ratio_ci = pars_ratio_ci[0] add_stddev_ratio = pars_ratio[1] add_stddev_ratio_ci = pars_ratio_ci[1] onecolumn_figure() hist2d(tab['sigma_HI'][good_pts] / 1000., np.array(tab['sigma_CO'])[good_pts] / 1000., bins=13, data_kwargs={"alpha": 0.5}) plt.xlabel(r"$\sigma_{\rm HI}$ (km/s)") plt.ylabel(r"$\sigma_{\rm CO}$ (km/s)") # slope = params[0] # inter = params[1] / 1000. # slope_ci = cis[0] # inter_cis = cis[1] / 1000. # plt.plot([4, 12], [4. * slope + inter, 12. * slope + inter], # label='Linear Fit') # plt.fill_between([4, 12], [4. * slope_ci[0] + inter_cis[0], # 12. * slope_ci[0] + inter_cis[0]],
iram_co21_14B088_data_path( "m33.co21_iram.14B-088_HI.peakvels.fits"))[0].data / 1000. co_peaktemp = fits.open( iram_co21_14B088_data_path( "m33.co21_iram.14B-088_HI.peaktemps.fits"))[0].data co_mask = fits.open( iram_co21_14B088_data_path("m33.co21_iram.14B-088_HI_source_mask.fits"))[0] good_co_pts = co_mask.data.sum(0) >= 2 good_pts = np.logical_and(np.isfinite(hi_mom1), good_co_pts) # Impose 3 sigma cut on the CO peaks good_pts = np.logical_and(good_pts, co_peaktemp > 0.06) onecolumn_figure(font_scale=1.1) # Mom1 comparisons hist2d(np.abs((co_mom1 - hi_mom1)[good_pts]), co_peaktemp[good_pts], bins=16, data_kwargs={"alpha": 0.6}, range=[(0.0, 25.0), (0.0, 1.05 * np.max(co_peaktemp[good_pts]))]) plt.axhline(0.06, color=cpal[1], linestyle='--', linewidth=3) plt.axvline(2.6, color=cpal[2], linestyle=':', linewidth=3) plt.ylabel(r"T$_\mathrm{peak, CO}$ (K)") plt.xlabel(r"$|V_{\rm cent, CO} - V_{\rm cent, HI}|$ (km/s)") plt.grid() plt.tight_layout() plt.savefig(