def plot_rank_histogram(allres, orgres_type): print('[viz] plotting %r rank histogram' % orgres_type) ranks = allres.__dict__[orgres_type].ranks label = 'P(rank | ' + orgres_type + ' match)' title = orgres_type + ' match rankings histogram\n' + allres.title_suffix df2.figure(fnum=FIGNUM, doclf=True, title=title) df2.draw_histpdf(ranks, label=label) # FIXME df2.set_xlabel('ground truth ranks') df2.set_ylabel('frequency') df2.legend() __dump_or_browse(allres.ibs, 'rankviz')
def plot_score_pdf(allres, orgres_type, colorx=0.0, variation_truncate=False): print('[viz] plotting ' + orgres_type + ' score pdf') title = orgres_type + ' match score frequencies\n' + allres.title_suffix scores = allres.__dict__[orgres_type].scores print('[viz] len(scores) = %r ' % (len(scores),)) label = 'P(score | %r)' % orgres_type df2.figure(fnum=FIGNUM, doclf=True, title=title) df2.draw_pdf(scores, label=label, colorx=colorx) if variation_truncate: df2.variation_trunctate(scores) #df2.variation_trunctate(false.scores) df2.set_xlabel('score') df2.set_ylabel('frequency') df2.legend() __dump_or_browse(allres.ibs, 'scoreviz')
def plot_score_pdf(allres, orgres_type, colorx=0.0, variation_truncate=False): print('[viz] plotting ' + orgres_type + ' score pdf') title = orgres_type + ' match score frequencies\n' + allres.title_suffix scores = allres.__dict__[orgres_type].scores print('[viz] len(scores) = %r ' % (len(scores), )) label = 'P(score | %r)' % orgres_type df2.figure(fnum=FIGNUM, doclf=True, title=title) df2.draw_pdf(scores, label=label, colorx=colorx) if variation_truncate: df2.variation_trunctate(scores) #df2.variation_trunctate(false.scores) df2.set_xlabel('score') df2.set_ylabel('frequency') df2.legend() __dump_or_browse(allres.ibs, 'scoreviz')
def plot_rank_stem(allres, orgres_type='true'): print('[viz] plotting rank stem') # Visualize rankings with the stem plot ibs = allres.ibs title = orgres_type + 'rankings stem plot\n' + allres.title_suffix orgres = allres.__dict__[orgres_type] df2.figure(fnum=FIGNUM, doclf=True, title=title) x_data = orgres.qcxs y_data = orgres.ranks df2.draw_stems(x_data, y_data) slice_num = int(np.ceil(np.log10(len(orgres.qcxs)))) df2.set_xticks(ibs.test_sample_cx[::slice_num]) df2.set_xlabel('query chip indeX (qcx)') df2.set_ylabel('groundtruth chip ranks') #df2.set_yticks(list(seen_ranks)) __dump_or_browse(allres.ibs, 'rankviz')
def TEST_figure1(wpatch, gradx, grady, gmag, gori, hist, centers): from plottool import draw_func2 as df2 import plottool import vtool.patch as ptool print('[rotinvar] 4) Draw histogram with interpolation annotations') fnum = 1 gorimag = plottool.color_orimag(gori, gmag, True) nRow, nCol = (2, 7) df2.figure(fnum=1, pnum=(nRow, 1, nRow), doclf=True, docla=True) plottool.draw_hist_subbin_maxima(hist, centers) df2.set_xlabel('grad orientation (radians)') df2.set_ylabel('grad magnitude') df2.set_title('dominant orientations') print('[rotinvar] 5) Show patch, gradients, magintude, and orientation') df2.imshow(wpatch, pnum=(nRow, nCol, 1), fnum=fnum, title='patch') df2.draw_vector_field(gradx, grady, pnum=(nRow, nCol, 2), fnum=fnum, title='gori (vec)') df2.imshow(gorimag, pnum=(nRow, nCol, 3), fnum=fnum, title='gori (col)') df2.imshow(np.abs(gradx), pnum=(nRow, nCol, 4), fnum=fnum, title='gradx') df2.imshow(np.abs(grady), pnum=(nRow, nCol, 5), fnum=fnum, title='grady') df2.imshow(gmag, pnum=(nRow, nCol, 6), fnum=fnum, title='gmag') gpatch = ptool.gaussian_patch(shape=gori.shape) df2.imshow(gpatch * 255, pnum=(nRow, nCol, 7), fnum=fnum, title='gauss weights', cmap_='hot') #gpatch3 = np.dstack((gpatch, gpatch, gpatch)) #df2.draw_vector_field(gradx * gpatch, grady * gpatch, pnum=(nRow, nCol, 8), fnum=fnum, title='gori (vec)') #df2.imshow(gorimag * gpatch3, pnum=(nRow, nCol, 9), fnum=fnum, title='gori (col)') #df2.imshow(gradx * gpatch, pnum=(nRow, nCol, 10), fnum=fnum, title='gradx') #df2.imshow(grady * gpatch, pnum=(nRow, nCol, 11), fnum=fnum, title='grady') #df2.imshow(gmag * gpatch, pnum=(nRow, nCol, 12), fnum=fnum, title='gmag') return locals()
def plot_score_matrix(allres): print('[viz] plotting score matrix') score_matrix = allres.score_matrix title = 'Score Matrix\n' + allres.title_suffix # Find inliers #inliers = util.find_std_inliers(score_matrix) #max_inlier = score_matrix[inliers].max() # Trunate above 255 score_img = np.copy(score_matrix) #score_img[score_img < 0] = 0 #score_img[score_img > 255] = 255 #dim = 0 #score_img = util.norm_zero_one(score_img, dim=dim) # Make colors scores = score_img.flatten() colors = df2.scores_to_color(scores, logscale=True) cmap = df2.scores_to_cmap(scores, colors) df2.figure(fnum=FIGNUM, doclf=True, title=title) # Show score matrix df2.imshow(score_img, fnum=FIGNUM, cmap=cmap) # Colorbar df2.colorbar(scores, colors) df2.set_xlabel('database') df2.set_ylabel('queries')