예제 #1
0
def plot_search_surface(known_nd_data, known_target_points, given_data_dims, opt_model_params=None):
    import plottool as pt
    pt.figure(2, doclf=True)

    # Interpolate uniform grid positions
    unknown_nd_data, ug_shape = compute_interpolation_grid(known_nd_data, 0 * 5)
    interpolated_error = interpolate_error(known_nd_data, known_target_points, unknown_nd_data)

    ax = pt.plot_surface3d(
        unknown_nd_data.T[0].reshape(ug_shape),
        unknown_nd_data.T[1].reshape(ug_shape),
        interpolated_error.reshape(ug_shape),
        xlabel='nDaids',
        ylabel='K',
        zlabel='error',
        rstride=1, cstride=1,
        cmap=pt.plt.get_cmap('jet'),
        wire=True,
        #norm=pt.mpl.colors.Normalize(0, 1),
        #shade=False,
        #dark=False,
    )
    ax.scatter(known_nd_data.T[0], known_nd_data.T[1], known_target_points, s=100, c=pt.YELLOW)

    assert len(given_data_dims) == 1, 'can only plot 1 given data dim'
    xdim = given_data_dims[0]
    ydim = (xdim + 1) % (len(known_nd_data.T))
    known_nd_min = known_nd_data.min(axis=0)
    known_nd_max = known_nd_data.max(axis=0)
    xmin, xmax = known_nd_min[xdim], known_nd_max[xdim]
    ymin, ymax = known_nd_min[ydim], known_nd_max[ydim]
    zmin, zmax = known_target_points.min(), known_target_points.max()

    if opt_model_params is not None:
        # plot learned data if availabel
        #given_known_nd_data = known_nd_data.take(given_data_dims, axis=1)
        xdata = np.linspace(xmin, xmax)
        ydata = compute_K(xdata, opt_model_params)
        xydata = np.array((xdata, ydata)).T
        zdata = interpolate_error(known_nd_data, known_target_points, xydata)
        ax.plot(xdata, ydata, zdata, c=pt.ORANGE)
        ymax = max(ymax, ydata.max())
        ymin = min(ymin, ydata.min())
        zmin = min(zmin, zdata.min())
        zmax = max(zmax, zdata.max())
        ax.scatter(xdata, ydata, zdata, s=100, c=pt.ORANGE)
        #[t.set_color('white') for t in ax.xaxis.get_ticklines()]
        #[t.set_color('white') for t in ax.xaxis.get_ticklabels()]
    ax.set_aspect('auto')
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(ymin, ymax)
    ax.set_zlim(zmin, zmax)
    import matplotlib.ticker as mtick
    ax.zaxis.set_major_formatter(mtick.FormatStrFormatter('%.2f'))
    return ax
예제 #2
0
파일: learn.py 프로젝트: dilas12345/local
def iters_until_threshold():
    """
    How many iterations of ewma until you hit the poisson / biniomal threshold

    This establishes a principled way to choose the threshold for the refresh
    criterion in my thesis. There are paramters --- moving parts --- that we
    need to work with: `a` the patience, `s` the span, and `mu` our ewma.

    `s` is a span paramter indicating how far we look back.

    `mu` is the average number of label-changing reviews in roughly the last
    `s` manual decisions.

    These numbers are used to estimate the probability that any of the next `a`
    manual decisions will be label-chanigng. When that probability falls below
    a threshold we terminate. The goal is to choose `a`, `s`, and the threshold
    `t`, such that the probability will fall below the threshold after a maximum
    of `a` consecutive non-label-chaning reviews. IE we want to tie the patience
    paramter (how far we look ahead) to how far we actually are willing to go.
    """
    import numpy as np
    import utool as ut
    import sympy as sym
    i = sym.symbols('i', integer=True, nonnegative=True, finite=True)
    # mu_i = sym.symbols('mu_i', integer=True, nonnegative=True, finite=True)
    s = sym.symbols('s', integer=True, nonnegative=True, finite=True)  # NOQA
    thresh = sym.symbols('tau', real=True, nonnegative=True,
                         finite=True)  # NOQA
    alpha = sym.symbols('alpha', real=True, nonnegative=True,
                        finite=True)  # NOQA
    c_alpha = sym.symbols('c_alpha', real=True, nonnegative=True, finite=True)
    # patience
    a = sym.symbols('a', real=True, nonnegative=True, finite=True)

    available_subs = {
        a: 20,
        s: a,
        alpha: 2 / (s + 1),
        c_alpha: (1 - alpha),
    }

    def dosubs(expr, d=available_subs):
        """ recursive expression substitution """
        expr1 = expr.subs(d)
        if expr == expr1:
            return expr1
        else:
            return dosubs(expr1, d=d)

    # mu is either the support for the poisson distribution
    # or is is the p in the binomial distribution
    # It is updated at timestep i based on ewma, assuming each incoming responce is 0
    mu_0 = 1.0
    mu_i = c_alpha**i

    # Estimate probability that any event will happen in the next `a` reviews
    # at time `i`.
    poisson_i = 1 - sym.exp(-mu_i * a)
    binom_i = 1 - (1 - mu_i)**a

    # Expand probabilities to be a function of i, s, and a
    part = ut.delete_dict_keys(available_subs.copy(), [a, s])
    mu_i = dosubs(mu_i, d=part)
    poisson_i = dosubs(poisson_i, d=part)
    binom_i = dosubs(binom_i, d=part)

    if True:
        # ewma of mu at time i if review is always not label-changing (meaningful)
        mu_1 = c_alpha * mu_0  # NOQA
        mu_2 = c_alpha * mu_1  # NOQA

    if True:
        i_vals = np.arange(0, 100)
        mu_vals = np.array(
            [dosubs(mu_i).subs({
                i: i_
            }).evalf() for i_ in i_vals])  # NOQA
        binom_vals = np.array(
            [dosubs(binom_i).subs({
                i: i_
            }).evalf() for i_ in i_vals])  # NOQA
        poisson_vals = np.array(
            [dosubs(poisson_i).subs({
                i: i_
            }).evalf() for i_ in i_vals])  # NOQA

        # Find how many iters it actually takes my expt to terminate
        thesis_draft_thresh = np.exp(-2)
        np.where(mu_vals < thesis_draft_thresh)[0]
        np.where(binom_vals < thesis_draft_thresh)[0]
        np.where(poisson_vals < thesis_draft_thresh)[0]

    sym.pprint(sym.simplify(mu_i))
    sym.pprint(sym.simplify(binom_i))
    sym.pprint(sym.simplify(poisson_i))

    # Find the thresholds that force termination after `a` reviews have passed
    # do this by setting i=a
    poisson_thresh = poisson_i.subs({i: a})
    binom_thresh = binom_i.subs({i: a})

    print('Poisson thresh')
    print(sym.latex(sym.Eq(thresh, poisson_thresh)))
    print(sym.latex(sym.Eq(thresh, sym.simplify(poisson_thresh))))

    poisson_thresh.subs({a: 115, s: 30}).evalf()

    sym.pprint(sym.Eq(thresh, poisson_thresh))
    sym.pprint(sym.Eq(thresh, sym.simplify(poisson_thresh)))

    print('Binomial thresh')
    sym.pprint(sym.simplify(binom_thresh))

    sym.pprint(sym.simplify(poisson_thresh.subs({s: a})))

    def taud(coeff):
        return coeff * 360

    if 'poisson_cache' not in vars():
        poisson_cache = {}
        binom_cache = {}

    S, A = np.meshgrid(np.arange(1, 150, 1), np.arange(0, 150, 1))

    import plottool as pt
    SA_coords = list(zip(S.ravel(), A.ravel()))
    for sval, aval in ut.ProgIter(SA_coords):
        if (sval, aval) not in poisson_cache:
            poisson_cache[(sval, aval)] = float(
                poisson_thresh.subs({
                    a: aval,
                    s: sval
                }).evalf())
    poisson_zdata = np.array([
        poisson_cache[(sval, aval)] for sval, aval in SA_coords
    ]).reshape(A.shape)
    fig = pt.figure(fnum=1, doclf=True)
    pt.gca().set_axis_off()
    pt.plot_surface3d(S,
                      A,
                      poisson_zdata,
                      xlabel='s',
                      ylabel='a',
                      rstride=3,
                      cstride=3,
                      zlabel='poisson',
                      mode='wire',
                      contour=True,
                      title='poisson3d')
    pt.gca().set_zlim(0, 1)
    pt.gca().view_init(elev=taud(1 / 16), azim=taud(5 / 8))
    fig.set_size_inches(10, 6)
    fig.savefig('a-s-t-poisson3d.png',
                dpi=300,
                bbox_inches=pt.extract_axes_extents(fig, combine=True))

    for sval, aval in ut.ProgIter(SA_coords):
        if (sval, aval) not in binom_cache:
            binom_cache[(sval, aval)] = float(
                binom_thresh.subs({
                    a: aval,
                    s: sval
                }).evalf())
    binom_zdata = np.array([
        binom_cache[(sval, aval)] for sval, aval in SA_coords
    ]).reshape(A.shape)
    fig = pt.figure(fnum=2, doclf=True)
    pt.gca().set_axis_off()
    pt.plot_surface3d(S,
                      A,
                      binom_zdata,
                      xlabel='s',
                      ylabel='a',
                      rstride=3,
                      cstride=3,
                      zlabel='binom',
                      mode='wire',
                      contour=True,
                      title='binom3d')
    pt.gca().set_zlim(0, 1)
    pt.gca().view_init(elev=taud(1 / 16), azim=taud(5 / 8))
    fig.set_size_inches(10, 6)
    fig.savefig('a-s-t-binom3d.png',
                dpi=300,
                bbox_inches=pt.extract_axes_extents(fig, combine=True))

    # Find point on the surface that achieves a reasonable threshold

    # Sympy can't solve this
    # sym.solve(sym.Eq(binom_thresh.subs({s: 50}), .05))
    # sym.solve(sym.Eq(poisson_thresh.subs({s: 50}), .05))
    # Find a numerical solution
    def solve_numeric(expr,
                      target,
                      solve_for,
                      fixed={},
                      method=None,
                      bounds=None):
        """
        Args:
            expr (Expr): symbolic expression
            target (float): numberic value
            solve_for (sympy.Symbol): The symbol you care about
            fixed (dict): fixed values of the symbol

        solve_numeric(poisson_thresh, .05, {s: 30}, method=None)
        solve_numeric(poisson_thresh, .05, {s: 30}, method='Nelder-Mead')
        solve_numeric(poisson_thresh, .05, {s: 30}, method='BFGS')
        """
        import scipy.optimize
        # Find the symbol you want to solve for
        want_symbols = expr.free_symbols - set(fixed.keys())
        # TODO: can probably extend this to multiple params
        assert len(want_symbols) == 1, 'specify all but one var'
        assert solve_for == list(want_symbols)[0]
        fixed_expr = expr.subs(fixed)

        def func(a1):
            expr_value = float(fixed_expr.subs({solve_for: a1}).evalf())
            return (expr_value - target)**2

        if not fixed:
            a1 = 0
        else:
            a1 = list(fixed.values())[0]
        # if method is None:
        #     method = 'Nelder-Mead'
        #     method = 'Newton-CG'
        #     method = 'BFGS'
        result = scipy.optimize.minimize(func,
                                         x0=a1,
                                         method=method,
                                         bounds=bounds)
        if not result.success:
            print('\n')
            print(result)
            print('\n')
        return result

    # Numeric measurments of thie line

    thresh_vals = [.001, .01, .05, .1, .135]
    svals = np.arange(1, 100)

    target_poisson_plots = {}
    for target in ut.ProgIter(thresh_vals, bs=False, freq=1):
        poisson_avals = []
        for sval in ut.ProgIter(svals, 'poisson', freq=1):
            expr = poisson_thresh
            fixed = {s: sval}
            want = a
            aval = solve_numeric(expr,
                                 target,
                                 want,
                                 fixed,
                                 method='Nelder-Mead').x[0]
            poisson_avals.append(aval)
        target_poisson_plots[target] = (svals, poisson_avals)

    fig = pt.figure(fnum=3)
    for target, dat in target_poisson_plots.items():
        pt.plt.plot(*dat, label='prob={}'.format(target))
    pt.gca().set_xlabel('s')
    pt.gca().set_ylabel('a')
    pt.legend()
    pt.gca().set_title('poisson')
    fig.set_size_inches(5, 3)
    fig.savefig('a-vs-s-poisson.png',
                dpi=300,
                bbox_inches=pt.extract_axes_extents(fig, combine=True))

    target_binom_plots = {}
    for target in ut.ProgIter(thresh_vals, bs=False, freq=1):
        binom_avals = []
        for sval in ut.ProgIter(svals, 'binom', freq=1):
            aval = solve_numeric(binom_thresh,
                                 target,
                                 a, {
                                     s: sval
                                 },
                                 method='Nelder-Mead').x[0]
            binom_avals.append(aval)
        target_binom_plots[target] = (svals, binom_avals)

    fig = pt.figure(fnum=4)
    for target, dat in target_binom_plots.items():
        pt.plt.plot(*dat, label='prob={}'.format(target))
    pt.gca().set_xlabel('s')
    pt.gca().set_ylabel('a')
    pt.legend()
    pt.gca().set_title('binom')
    fig.set_size_inches(5, 3)
    fig.savefig('a-vs-s-binom.png',
                dpi=300,
                bbox_inches=pt.extract_axes_extents(fig, combine=True))

    # ----
    if True:

        fig = pt.figure(fnum=5, doclf=True)
        s_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for sval in s_vals:
            pp = poisson_thresh.subs({s: sval})

            a_vals = np.arange(0, 200)
            pp_vals = np.array(
                [float(pp.subs({
                    a: aval
                }).evalf()) for aval in a_vals])  # NOQA

            pt.plot(a_vals, pp_vals, label='s=%r' % (sval, ))
        pt.legend()
        pt.gca().set_xlabel('a')
        pt.gca().set_ylabel('poisson prob after a reviews')
        fig.set_size_inches(5, 3)
        fig.savefig('a-vs-thresh-poisson.png',
                    dpi=300,
                    bbox_inches=pt.extract_axes_extents(fig, combine=True))

        fig = pt.figure(fnum=6, doclf=True)
        s_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for sval in s_vals:
            pp = binom_thresh.subs({s: sval})
            a_vals = np.arange(0, 200)
            pp_vals = np.array(
                [float(pp.subs({
                    a: aval
                }).evalf()) for aval in a_vals])  # NOQA
            pt.plot(a_vals, pp_vals, label='s=%r' % (sval, ))
        pt.legend()
        pt.gca().set_xlabel('a')
        pt.gca().set_ylabel('binom prob after a reviews')
        fig.set_size_inches(5, 3)
        fig.savefig('a-vs-thresh-binom.png',
                    dpi=300,
                    bbox_inches=pt.extract_axes_extents(fig, combine=True))

        # -------

        fig = pt.figure(fnum=5, doclf=True)
        a_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for aval in a_vals:
            pp = poisson_thresh.subs({a: aval})
            s_vals = np.arange(1, 200)
            pp_vals = np.array(
                [float(pp.subs({
                    s: sval
                }).evalf()) for sval in s_vals])  # NOQA
            pt.plot(s_vals, pp_vals, label='a=%r' % (aval, ))
        pt.legend()
        pt.gca().set_xlabel('s')
        pt.gca().set_ylabel('poisson prob')
        fig.set_size_inches(5, 3)
        fig.savefig('s-vs-thresh-poisson.png',
                    dpi=300,
                    bbox_inches=pt.extract_axes_extents(fig, combine=True))

        fig = pt.figure(fnum=5, doclf=True)
        a_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for aval in a_vals:
            pp = binom_thresh.subs({a: aval})
            s_vals = np.arange(1, 200)
            pp_vals = np.array(
                [float(pp.subs({
                    s: sval
                }).evalf()) for sval in s_vals])  # NOQA
            pt.plot(s_vals, pp_vals, label='a=%r' % (aval, ))
        pt.legend()
        pt.gca().set_xlabel('s')
        pt.gca().set_ylabel('binom prob')
        fig.set_size_inches(5, 3)
        fig.savefig('s-vs-thresh-binom.png',
                    dpi=300,
                    bbox_inches=pt.extract_axes_extents(fig, combine=True))

    #---------------------
    # Plot out a table

    mu_i.subs({s: 75, a: 75}).evalf()
    poisson_thresh.subs({s: 75, a: 75}).evalf()

    sval = 50
    for target, dat in target_poisson_plots.items():
        slope = np.median(np.diff(dat[1]))
        aval = int(np.ceil(sval * slope))
        thresh = float(poisson_thresh.subs({s: sval, a: aval}).evalf())
        print('aval={}, sval={}, thresh={}, target={}'.format(
            aval, sval, thresh, target))

    for target, dat in target_binom_plots.items():
        slope = np.median(np.diff(dat[1]))
        aval = int(np.ceil(sval * slope))
        pass
예제 #3
0
def plot_search_surface(known_nd_data,
                        known_target_points,
                        given_data_dims,
                        opt_model_params=None):
    import plottool as pt
    pt.figure(2, doclf=True)

    # Interpolate uniform grid positions
    unknown_nd_data, ug_shape = compute_interpolation_grid(
        known_nd_data, 0 * 5)
    interpolated_error = interpolate_error(known_nd_data, known_target_points,
                                           unknown_nd_data)

    ax = pt.plot_surface3d(
        unknown_nd_data.T[0].reshape(ug_shape),
        unknown_nd_data.T[1].reshape(ug_shape),
        interpolated_error.reshape(ug_shape),
        xlabel='nDaids',
        ylabel='K',
        zlabel='error',
        rstride=1,
        cstride=1,
        cmap=pt.plt.get_cmap('jet'),
        wire=True,
        #norm=pt.mpl.colors.Normalize(0, 1),
        #shade=False,
        #dark=False,
    )
    ax.scatter(known_nd_data.T[0],
               known_nd_data.T[1],
               known_target_points,
               s=100,
               c=pt.YELLOW)

    assert len(given_data_dims) == 1, 'can only plot 1 given data dim'
    xdim = given_data_dims[0]
    ydim = (xdim + 1) % (len(known_nd_data.T))
    known_nd_min = known_nd_data.min(axis=0)
    known_nd_max = known_nd_data.max(axis=0)
    xmin, xmax = known_nd_min[xdim], known_nd_max[xdim]
    ymin, ymax = known_nd_min[ydim], known_nd_max[ydim]
    zmin, zmax = known_target_points.min(), known_target_points.max()

    if opt_model_params is not None:
        # plot learned data if availabel
        #given_known_nd_data = known_nd_data.take(given_data_dims, axis=1)
        xdata = np.linspace(xmin, xmax)
        ydata = compute_K(xdata, opt_model_params)
        xydata = np.array((xdata, ydata)).T
        zdata = interpolate_error(known_nd_data, known_target_points, xydata)
        ax.plot(xdata, ydata, zdata, c=pt.ORANGE)
        ymax = max(ymax, ydata.max())
        ymin = min(ymin, ydata.min())
        zmin = min(zmin, zdata.min())
        zmax = max(zmax, zdata.max())
        ax.scatter(xdata, ydata, zdata, s=100, c=pt.ORANGE)
        #[t.set_color('white') for t in ax.xaxis.get_ticklines()]
        #[t.set_color('white') for t in ax.xaxis.get_ticklabels()]
    ax.set_aspect('auto')
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(ymin, ymax)
    ax.set_zlim(zmin, zmax)
    import matplotlib.ticker as mtick
    ax.zaxis.set_major_formatter(mtick.FormatStrFormatter('%.2f'))
    return ax