예제 #1
0
 def query_last_feature(self):
     ibs = self.ibs
     qaid = self.qaid
     viz.show_nearest_descriptors(ibs,
                                  qaid,
                                  self.last_fx,
                                  pt.next_fnum(),
                                  qreq_=self.qreq_,
                                  draw_chip=True)
     fig3 = pt.gcf()
     ih.connect_callback(fig3, 'button_press_event', self.on_click)
     pt.draw()
예제 #2
0
        def hack_fix_centeralign():
            if textprops['horizontalalignment'] == 'center':
                print('Fixing centeralign')
                fig = pt.gcf()
                fig.canvas.draw()

                # Superhack for centered text. Fix bug in
                # /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py
                # /usr/local/lib/python2.7/dist-packages/matplotlib/text.py
                for offset_box in offset_box_list:
                    offset_box.set_offset
                    z = offset_box._text.get_window_extent()
                    (z.x1 - z.x0) / 2
                    offset_box._text
                    T = offset_box._text.get_transform()
                    A = mpl.transforms.Affine2D()
                    A.clear()
                    A.translate((z.x1 - z.x0) / 2, 0)
                    offset_box._text.set_transform(T + A)
예제 #3
0
파일: pgm_viz.py 프로젝트: warunanc/ibeis
def draw_bayesian_model(model,
                        evidence={},
                        soft_evidence={},
                        fnum=None,
                        pnum=None,
                        **kwargs):

    from pgmpy.models import BayesianModel
    if not isinstance(model, BayesianModel):
        model = model.to_bayesian_model()

    import plottool_ibeis as pt
    import networkx as nx
    kwargs = kwargs.copy()
    factor_list = kwargs.pop('factor_list', [])

    ttype_colors, ttype_scalars = make_colorcodes(model)

    textprops = {
        'horizontalalignment': 'left',
        'family': 'monospace',
        'size': 8,
    }

    # build graph attrs
    tup = get_node_viz_attrs(model, evidence, soft_evidence, factor_list,
                             ttype_colors, **kwargs)
    node_color, pos_list, pos_dict, takws = tup

    # draw graph
    has_inferred = evidence or 'factor_list' in kwargs

    if False:
        fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True)  # NOQA
        ax = pt.gca()
        drawkw = dict(pos=pos_dict,
                      ax=ax,
                      with_labels=True,
                      node_size=1100,
                      node_color=node_color)
        nx.draw(model, **drawkw)
    else:
        # BE VERY CAREFUL
        if 1:
            graph = model.copy()
            graph.__class__ = nx.DiGraph
            graph.graph['groupattrs'] = ut.ddict(dict)
            #graph = model.
            if getattr(graph, 'ttype2_cpds', None) is not None:
                # Add invis edges and ttype groups
                for ttype in model.ttype2_cpds.keys():
                    ttype_cpds = model.ttype2_cpds[ttype]
                    # use defined ordering
                    ttype_nodes = ut.list_getattr(ttype_cpds, 'variable')
                    # ttype_nodes = sorted(ttype_nodes)
                    invis_edges = list(ut.itertwo(ttype_nodes))
                    graph.add_edges_from(invis_edges)
                    nx.set_edge_attributes(
                        graph,
                        name='style',
                        values={edge: 'invis'
                                for edge in invis_edges})
                    nx.set_node_attributes(
                        graph,
                        name='groupid',
                        values={node: ttype
                                for node in ttype_nodes})
                    graph.graph['groupattrs'][ttype]['rank'] = 'same'
                    graph.graph['groupattrs'][ttype]['cluster'] = False
        else:
            graph = model
        pt.show_nx(graph,
                   layout_kw={'prog': 'dot'},
                   fnum=fnum,
                   pnum=pnum,
                   verbose=0)
        pt.zoom_factory()
        fig = pt.gcf()
        ax = pt.gca()
        pass
    hacks = [
        pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws
        if takw
    ]

    xmin, ymin = np.array(pos_list).min(axis=0)
    xmax, ymax = np.array(pos_list).max(axis=0)
    if 'name' in model.ttype2_template:
        num_names = len(model.ttype2_template['name'].basis)
        num_annots = len(model.ttype2_cpds['name'])
        if num_annots > 4:
            ax.set_xlim((xmin - 40, xmax + 40))
            ax.set_ylim((ymin - 50, ymax + 50))
            fig.set_size_inches(30, 7)
        else:
            ax.set_xlim((xmin - 42, xmax + 42))
            ax.set_ylim((ymin - 50, ymax + 50))
            fig.set_size_inches(23, 7)
        title = 'num_names=%r, num_annots=%r' % (
            num_names,
            num_annots,
        )
    else:
        title = ''
    map_assign = kwargs.get('map_assign', None)

    def word_insert(text):
        return '' if len(text) == 0 else text + ' '

    top_assignments = kwargs.get('top_assignments', None)
    if top_assignments is not None:
        map_assign, map_prob = top_assignments[0]
        if map_assign is not None:
            title += '\n%sMAP: ' % (word_insert(kwargs.get('method', '')))
            title += map_assign + ' @' + '%.2f%%' % (100 * map_prob, )
    if kwargs.get('show_title', True):
        pt.set_figtitle(title, size=14)

    for hack in hacks:
        hack()

    if has_inferred:
        # Hack in colorbars
        # if ut.list_type(basis) is int:
        #     pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1)
        # else:
        #     pt.colorbar(scalars, colors, lbl='score', ticklabels=basis)
        keys = ['name', 'score']
        locs = ['left', 'right']
        for key, loc in zip(keys, locs):
            if key in ttype_colors:
                basis = model.ttype2_template[key].basis
                # scalars =
                colors = ttype_colors[key]
                scalars = ttype_scalars[key]
                pt.colorbar(scalars,
                            colors,
                            lbl=key,
                            ticklabels=basis,
                            ticklocation=loc)
예제 #4
0
def ishow_chip(ibs,
               aid,
               fnum=2,
               fx=None,
               dodraw=True,
               config2_=None,
               ischild=False,
               **kwargs):
    r"""

    # TODO:
        split into two interactions
        interact chip and interact chip features

    Args:
        ibs (IBEISController):  ibeis controller object
        aid (int):  annotation id
        fnum (int):  figure number
        fx (None):

    CommandLine:
        python -m ibeis.viz.interact.interact_chip --test-ishow_chip --show
        python -m ibeis.viz.interact.interact_chip --test-ishow_chip --show --aid 2

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.viz.interact.interact_chip import *  # NOQA
        >>> import ibeis
        >>> # build test data
        >>> ibs = ibeis.opendb('testdb1')
        >>> aid = ut.get_argval('--aid', type_=int, default=1)
        >>> fnum = 2
        >>> fx = None
        >>> # execute function
        >>> dodraw = ut.show_was_requested()
        >>> result = ishow_chip(ibs, aid, fnum, fx, dodraw)
        >>> # verify results
        >>> pt.show_if_requested()
        >>> print(result)
    """
    fnum = pt.ensure_fnum(fnum)
    vh.ibsfuncs.assert_valid_aids(ibs, (aid, ))
    # TODO: Reconcile this with interact keypoints.
    # Preferably this will call that but it will set some fancy callbacks
    if not ischild:
        fig = ih.begin_interaction('chip', fnum)
    else:
        fig = pt.gcf()
        #fig = pt.figure(fnum=fnum, pnum=pnum)

    # Get chip info (make sure get_chips is called first)
    #mode_ptr = [1]
    mode_ptr = [0]

    def _select_fxth_kpt(fx):
        from plottool_ibeis.viz_featrow import draw_feat_row
        # Get the fx-th keypiont
        chip = ibs.get_annot_chips(aid, config2_=config2_)
        kp = ibs.get_annot_kpts(aid, config2_=config2_)[fx]
        sift = ibs.get_annot_vecs(aid, config2_=config2_)[fx]
        # Draw chip + keypoints + highlighted plots
        _chip_view(pnum=(2, 1, 1), sel_fx=fx)
        #ishow_chip(ibs, aid, fnum=None, fx=fx, config2_=config2_, **kwargs)
        # Draw the selected feature plots
        nRows, nCols, px = (2, 3, 3)
        draw_feat_row(chip, fx, kp, sift, fnum, nRows, nCols, px, None)

    def _chip_view(mode=0, pnum=(1, 1, 1), **kwargs):
        print('... _chip_view mode=%r' % mode_ptr[0])
        kwargs['ell'] = mode_ptr[0] == 1
        kwargs['pts'] = mode_ptr[0] == 2

        if not ischild:
            pt.figure(fnum=fnum, pnum=pnum, docla=True, doclf=True)
        # Toggle no keypoints view
        viz.show_chip(ibs,
                      aid,
                      fnum=fnum,
                      pnum=pnum,
                      config2_=config2_,
                      **kwargs)
        pt.set_figtitle('Chip View')

    def _on_chip_click(event):
        print('[inter] clicked chip')
        ax, x, y = event.inaxes, event.xdata, event.ydata
        if ih.clicked_outside_axis(event):
            if not ischild:
                print('... out of axis')
                mode_ptr[0] = (mode_ptr[0] + 1) % 3
                _chip_view(**kwargs)
        else:
            if event.button == 3:  # right-click
                import guitool_ibeis as gt
                #from ibeis.viz.interact import interact_chip
                height = fig.canvas.geometry().height()
                qpoint = gt.newQPoint(event.x, height - event.y)
                refresh_func = partial(_chip_view, **kwargs)

                callback_list = build_annot_context_options(
                    ibs,
                    aid,
                    refresh_func=refresh_func,
                    with_interact_chip=False,
                    config2_=config2_)
                qwin = fig.canvas
                gt.popup_menu(qwin, qpoint, callback_list)
                #interact_chip.show_annot_context_menu(
                #    ibs, aid, fig.canvas, qpoint, refresh_func=refresh_func,
                #    with_interact_chip=False, config2_=config2_)
            else:
                viztype = vh.get_ibsdat(ax, 'viztype')
                print('[ic] viztype=%r' % viztype)
                if viztype == 'chip' and event.key == 'shift':
                    _chip_view(**kwargs)
                    ih.disconnect_callback(fig, 'button_press_event')
                elif viztype == 'chip':
                    kpts = ibs.get_annot_kpts(aid, config2_=config2_)
                    if len(kpts) > 0:
                        fx = nearest_point(x, y, kpts, conflict_mode='next')[0]
                        print('... clicked fx=%r' % fx)
                        _select_fxth_kpt(fx)
                    else:
                        print('... len(kpts) == 0')
                elif viztype in ['warped', 'unwarped']:
                    fx = vh.get_ibsdat(ax, 'fx')
                    if fx is not None and viztype == 'warped':
                        viz.show_keypoint_gradient_orientations(
                            ibs, aid, fx, fnum=pt.next_fnum())
                else:
                    print('...Unknown viztype: %r' % viztype)

        viz.draw()

    # Draw without keypoints the first time
    if fx is not None:
        _select_fxth_kpt(fx)
    else:
        _chip_view(**kwargs)
    if dodraw:
        viz.draw()

    if not ischild:
        ih.connect_callback(fig, 'button_press_event', _on_chip_click)
예제 #5
0
def show_time_distributions(ibs, unixtime_list):
    r"""
    """
    #import vtool_ibeis as vt
    import plottool_ibeis as pt
    unixtime_list = np.array(unixtime_list)
    num_nan = np.isnan(unixtime_list).sum()
    num_total = len(unixtime_list)
    unixtime_list = unixtime_list[~np.isnan(unixtime_list)]

    from ibeis.scripts.thesis import TMP_RC
    import matplotlib as mpl
    mpl.rcParams.update(TMP_RC)

    if False:
        from matplotlib import dates as mpldates
        #data_list = list(map(ut.unixtime_to_datetimeobj, unixtime_list))
        n, bins, patches = pt.plt.hist(unixtime_list, 365)
        #n_ = list(map(ut.unixtime_to_datetimeobj, n))
        #bins_ = list(map(ut.unixtime_to_datetimeobj, bins))
        pt.plt.setp(patches, 'facecolor', 'g', 'alpha', 0.75)
        ax = pt.gca()
        #ax.xaxis.set_major_locator(mpldates.YearLocator())
        #hfmt = mpldates.DateFormatter('%y/%m/%d')
        #ax.xaxis.set_major_formatter(hfmt)
        mpldates.num2date(unixtime_list)
        #pt.gcf().autofmt_xdate()
        #y = pt.plt.normpdf( bins, unixtime_list.mean(), unixtime_list.std())
        #ax.set_xticks(bins_)
        #l = pt.plt.plot(bins_, y, 'k--', linewidth=1.5)
    else:
        pt.draw_time_distribution(unixtime_list)
        #pt.draw_histogram()
        ax = pt.gca()
        ax.set_xlabel('Date')
        ax.set_title('Timestamp distribution of %s. #nan=%d/%d' %
                     (ibs.get_dbname_alias(), num_nan, num_total))
        pt.gcf().autofmt_xdate()

        icon = ibs.get_database_icon()
        if False and icon is not None:
            #import matplotlib as mpl
            #import vtool_ibeis as vt
            ax = pt.gca()
            # Overlay a species icon
            # http://matplotlib.org/examples/pylab_examples/demo_annotation_box.html
            #icon = vt.convert_image_list_colorspace([icon], 'RGB', 'BGR')[0]
            # pt.overlay_icon(icon, coords=(0, 1), bbox_alignment=(0, 1))
            pt.overlay_icon(icon,
                            coords=(0, 1),
                            bbox_alignment=(0, 1),
                            as_artist=1,
                            max_asize=(100, 200))
            #imagebox = mpl.offsetbox.OffsetImage(icon, zoom=1.0)
            ##xy = [ax.get_xlim()[0] + 5, ax.get_ylim()[1]]
            ##ax.set_xlim(1, 100)
            ##ax.set_ylim(0, 100)
            ##x = np.array(ax.get_xlim()).sum() / 2
            ##y = np.array(ax.get_ylim()).sum() / 2
            ##xy = [x, y]
            ##print('xy = %r' % (xy,))
            ##x = np.nanmin(unixtime_list)
            ##xy = [x, y]
            ##print('xy = %r' % (xy,))
            ##ax.get_ylim()[0]]
            #xy = [ax.get_xlim()[0], ax.get_ylim()[1]]
            #ab = mpl.offsetbox.AnnotationBbox(
            #    imagebox, xy, xycoords='data',
            #    xybox=(-0., 0.),
            #    boxcoords="offset points",
            #    box_alignment=(0, 1), pad=0.0)
            #ax.add_artist(ab)

    if ut.get_argflag('--contextadjust'):
        #pt.adjust_subplots(left=.08, bottom=.1, top=.9, wspace=.3, hspace=.1)
        pt.adjust_subplots(use_argv=True)
예제 #6
0
def get_injured_sharks():
    """
    >>> from ibeis.scripts.getshark import *  # NOQA
    """
    import requests
    url = 'http://www.whaleshark.org/getKeywordImages.jsp'
    resp = requests.get(url)
    assert resp.status_code == 200
    keywords = resp.json()['keywords']
    key_list = ut.take_column(keywords, 'indexName')
    key_to_nice  = {k['indexName']: k['readableName'] for k in keywords}

    injury_patterns = [
        'injury', 'net', 'hook', 'trunc', 'damage', 'scar', 'nicks', 'bite',
    ]

    injury_keys = [key for key in key_list if any([pat in key for pat in injury_patterns])]
    noninjury_keys = ut.setdiff(key_list, injury_keys)
    injury_nice = ut.lmap(lambda k: key_to_nice[k], injury_keys)  # NOQA
    noninjury_nice = ut.lmap(lambda k: key_to_nice[k], noninjury_keys)  # NOQA
    key_list = injury_keys

    keyed_images = {}
    for key in ut.ProgIter(key_list, lbl='reading index', bs=True):
        key_url = url + '?indexName={indexName}'.format(indexName=key)
        key_resp = requests.get(key_url)
        assert key_resp.status_code == 200
        key_imgs = key_resp.json()['images']
        keyed_images[key] = key_imgs

    key_hist = {key: len(imgs) for key, imgs in keyed_images.items()}
    key_hist = ut.sort_dict(key_hist, 'vals')
    print(ut.repr3(key_hist))
    nice_key_hist = ut.map_dict_keys(lambda k: key_to_nice[k], key_hist)
    nice_key_hist = ut.sort_dict(nice_key_hist, 'vals')
    print(ut.repr3(nice_key_hist))

    key_to_urls = {key: ut.take_column(vals, 'url') for key, vals in keyed_images.items()}
    overlaps = {}
    import itertools
    overlap_img_list = []
    for k1, k2 in itertools.combinations(key_to_urls.keys(), 2):
        overlap_imgs = ut.isect(key_to_urls[k1], key_to_urls[k2])
        num_overlap = len(overlap_imgs)
        overlaps[(k1, k2)] = num_overlap
        overlaps[(k1, k1)] = len(key_to_urls[k1])
        if num_overlap > 0:
            #print('[%s][%s], overlap=%r' % (k1, k2, num_overlap))
            overlap_img_list.extend(overlap_imgs)

    all_img_urls = list(set(ut.flatten(key_to_urls.values())))
    num_all = len(all_img_urls)  # NOQA
    print('num_all = %r' % (num_all,))

    # Determine super-categories
    categories = ['nicks', 'scar', 'trunc']

    # Force these keys into these categories
    key_to_cat = {'scarbite': 'other_injury'}

    cat_to_keys = ut.ddict(list)

    for key in key_to_urls.keys():
        flag = 1
        if key in key_to_cat:
            cat = key_to_cat[key]
            cat_to_keys[cat].append(key)
            continue
        for cat in categories:
            if cat in key:
                cat_to_keys[cat].append(key)
                flag = 0
        if flag:
            cat = 'other_injury'
            cat_to_keys[cat].append(key)

    cat_urls = ut.ddict(list)
    for cat, keys in cat_to_keys.items():
        for key in keys:
            cat_urls[cat].extend(key_to_urls[key])

    cat_hist = {}
    for cat in list(cat_urls.keys()):
        cat_urls[cat] = list(set(cat_urls[cat]))
        cat_hist[cat] = len(cat_urls[cat])

    print(ut.repr3(cat_to_keys))
    print(ut.repr3(cat_hist))

    key_to_cat = dict([(val, key) for key, vals in cat_to_keys.items() for val in vals])

    #ingestset = {
    #    '__class__': 'ImageSet',
    #    'images': ut.ddict(dict)
    #}
    #for key, key_imgs in keyed_images.items():
    #    for imgdict in key_imgs:
    #        url = imgdict['url']
    #        encid = imgdict['correspondingEncounterNumber']
    #        # Make structure
    #        encdict = encounters[encid]
    #        encdict['__class__'] = 'Encounter'
    #        imgdict = ut.delete_keys(imgdict.copy(), ['correspondingEncounterNumber'])
    #        imgdict['__class__'] = 'Image'
    #        cat = key_to_cat[key]
    #        annotdict = {'relative_bbox': [.01, .01, .98, .98], 'tags': [cat, key]}
    #        annotdict['__class__'] = 'Annotation'

    #        # Ensure structures exist
    #        encdict['images'] = encdict.get('images', [])
    #        imgdict['annots'] = imgdict.get('annots', [])

    #        # Add an image to this encounter
    #        encdict['images'].append(imgdict)
    #        # Add an annotation to this image
    #        imgdict['annots'].append(annotdict)

    ##http://springbreak.wildbook.org/rest/org.ecocean.Encounter/1111
    #get_enc_url = 'http://www.whaleshark.org/rest/org.ecocean.Encounter/%s' % (encid,)
    #resp = requests.get(get_enc_url)
    #print(ut.repr3(encdict))
    #print(ut.repr3(encounters))

    # Download the files to the local disk
    #fpath_list =

    all_urls = ut.unique(ut.take_column(
        ut.flatten(
            ut.dict_subset(keyed_images, ut.flatten(cat_to_keys.values())).values()
        ), 'url'))

    dldir = ut.truepath('~/tmpsharks')
    from os.path import commonprefix, basename  # NOQA
    prefix = commonprefix(all_urls)
    suffix_list = [url_[len(prefix):] for url_ in all_urls]
    fname_list = [suffix.replace('/', '--') for suffix in suffix_list]

    fpath_list = []
    for url, fname in ut.ProgIter(zip(all_urls, fname_list), lbl='downloading imgs', freq=1):
        fpath = ut.grab_file_url(url, download_dir=dldir, fname=fname, verbose=False)
        fpath_list.append(fpath)

    # Make sure we keep orig info
    #url_to_keys = ut.ddict(list)
    url_to_info = ut.ddict(dict)
    for key, imgdict_list in keyed_images.items():
        for imgdict in imgdict_list:
            url = imgdict['url']
            info = url_to_info[url]
            for k, v in imgdict.items():
                info[k] = info.get(k, [])
                info[k].append(v)
            info['keys'] = info.get('keys', [])
            info['keys'].append(key)
            #url_to_keys[url].append(key)

    info_list = ut.take(url_to_info, all_urls)
    for info in info_list:
        if len(set(info['correspondingEncounterNumber'])) > 1:
            assert False, 'url with two different encounter nums'
    # Combine duplicate tags

    hashid_list = [ut.get_file_uuid(fpath_, stride=8) for fpath_ in ut.ProgIter(fpath_list, bs=True)]
    groupxs = ut.group_indices(hashid_list)[1]

    # Group properties by duplicate images
    #groupxs = [g for g in groupxs if len(g) > 1]
    fpath_list_ = ut.take_column(ut.apply_grouping(fpath_list, groupxs), 0)
    url_list_ = ut.take_column(ut.apply_grouping(all_urls, groupxs), 0)
    info_list_ = [ut.map_dict_vals(ut.flatten, ut.dict_accum(*info_))
                  for info_ in ut.apply_grouping(info_list, groupxs)]

    encid_list_ = [ut.unique(info_['correspondingEncounterNumber'])[0]
                   for info_ in info_list_]
    keys_list_ = [ut.unique(info_['keys']) for info_ in info_list_]
    cats_list_ = [ut.unique(ut.take(key_to_cat, keys)) for keys in keys_list_]

    clist = ut.ColumnLists({
        'gpath': fpath_list_,
        'url': url_list_,
        'encid': encid_list_,
        'key': keys_list_,
        'cat': cats_list_,
    })

    #for info_ in ut.apply_grouping(info_list, groupxs):
    #    info = ut.dict_accum(*info_)
    #    info = ut.map_dict_vals(ut.flatten, info)
    #    x = ut.unique(ut.flatten(ut.dict_accum(*info_)['correspondingEncounterNumber']))
    #    if len(x) > 1:
    #        info = info.copy()
    #        del info['keys']
    #        print(ut.repr3(info))

    flags = ut.lmap(ut.fpath_has_imgext, clist['gpath'])
    clist = clist.compress(flags)

    import ibeis
    ibs = ibeis.opendb('WS_Injury', allow_newdir=True)

    gid_list = ibs.add_images(clist['gpath'])
    clist['gid'] = gid_list

    failed_flags = ut.flag_None_items(clist['gid'])
    print('# failed %s' % (sum(failed_flags)),)
    passed_flags = ut.not_list(failed_flags)
    clist = clist.compress(passed_flags)
    ut.assert_all_not_None(clist['gid'])
    #ibs.get_image_uris_original(clist['gid'])
    ibs.set_image_uris_original(clist['gid'], clist['url'], overwrite=True)

    #ut.zipflat(clist['cat'], clist['key'])
    if False:
        # Can run detection instead
        clist['tags'] = ut.zipflat(clist['cat'])
        aid_list = ibs.use_images_as_annotations(clist['gid'], adjust_percent=0.01,
                                                 tags_list=clist['tags'])
        aid_list

    import plottool_ibeis as pt
    from ibeis import core_annots
    pt.qt4ensure()
    #annots = ibs.annots()
    #aids = [1, 2]
    #ibs.depc_annot.get('hog', aids , 'hog')
    #ibs.depc_annot.get('chip', aids, 'img')
    for aid in ut.InteractiveIter(ibs.get_valid_aids()):
        hogs = ibs.depc_annot.d.get_hog_hog([aid])
        chips = ibs.depc_annot.d.get_chips_img([aid])
        chip = chips[0]
        hogimg = core_annots.make_hog_block_image(hogs[0])
        pt.clf()
        pt.imshow(hogimg, pnum=(1, 2, 1))
        pt.imshow(chip, pnum=(1, 2, 2))
        fig = pt.gcf()
        fig.show()
        fig.canvas.draw()

    #print(len(groupxs))

    #if False:
    #groupxs = ut.find_duplicate_items(ut.lmap(basename, suffix_list)).values()
    #print(ut.repr3(ut.apply_grouping(all_urls, groupxs)))
    #    # FIX
    #    for fpath, fname in zip(fpath_list, fname_list):
    #        if ut.checkpath(fpath):
    #            ut.move(fpath, join(dirname(fpath), fname))
    #            print('fpath = %r' % (fpath,))

    #import ibeis
    #from ibeis.dbio import ingest_dataset
    #dbdir = ibeis.sysres.lookup_dbdir('WS_ALL')
    #self = ingest_dataset.Ingestable2(dbdir)

    if False:
        # Show overlap matrix
        import plottool_ibeis as pt
        import pandas as pd
        import numpy as np
        dict_ = overlaps
        s = pd.Series(dict_, index=pd.MultiIndex.from_tuples(overlaps))
        df = s.unstack()
        lhs, rhs = df.align(df.T)
        df = lhs.add(rhs, fill_value=0).fillna(0)

        label_texts = df.columns.values

        def label_ticks(label_texts):
            import plottool_ibeis as pt
            truncated_labels = [repr(lbl[0:100]) for lbl in label_texts]
            ax = pt.gca()
            ax.set_xticks(list(range(len(label_texts))))
            ax.set_xticklabels(truncated_labels)
            [lbl.set_rotation(-55) for lbl in ax.get_xticklabels()]
            [lbl.set_horizontalalignment('left') for lbl in ax.get_xticklabels()]

            #xgrid, ygrid = np.meshgrid(range(len(label_texts)), range(len(label_texts)))
            #pt.plot_surface3d(xgrid, ygrid, disjoint_mat)
            ax.set_yticks(list(range(len(label_texts))))
            ax.set_yticklabels(truncated_labels)
            [lbl.set_horizontalalignment('right') for lbl in ax.get_yticklabels()]
            [lbl.set_verticalalignment('center') for lbl in ax.get_yticklabels()]
            #[lbl.set_rotation(20) for lbl in ax.get_yticklabels()]

        #df = df.sort(axis=0)
        #df = df.sort(axis=1)

        sortx = np.argsort(df.sum(axis=1).values)[::-1]
        df = df.take(sortx, axis=0)
        df = df.take(sortx, axis=1)

        fig = pt.figure(fnum=1)
        fig.clf()
        mat = df.values.astype(np.int32)
        mat[np.diag_indices(len(mat))] = 0
        vmax = mat[(1 - np.eye(len(mat))).astype(np.bool)].max()
        import matplotlib.colors
        norm = matplotlib.colors.Normalize(vmin=0, vmax=vmax, clip=True)
        pt.plt.imshow(mat, cmap='hot', norm=norm, interpolation='none')
        pt.plt.colorbar()
        pt.plt.grid('off')
        label_ticks(label_texts)
        fig.tight_layout()

    #overlap_df = pd.DataFrame.from_dict(overlap_img_list)

    class TmpImage(ut.NiceRepr):
        pass

    from skimage.feature import hog
    from skimage import data, color, exposure
    import plottool_ibeis as pt
    image2 = color.rgb2gray(data.astronaut())  # NOQA

    fpath = './GOPR1120.JPG'

    import vtool_ibeis as vt
    for fpath in [fpath]:
        """
        http://scikit-image.org/docs/dev/auto_examples/plot_hog.html
        """

        image = vt.imread(fpath, grayscale=True)
        image = pt.color_funcs.to_base01(image)

        fig = pt.figure(fnum=2)
        fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16),
                            cells_per_block=(1, 1), visualise=True)

        fig, (ax1, ax2) = pt.plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)

        ax1.axis('off')
        ax1.imshow(image, cmap=pt.plt.cm.gray)
        ax1.set_title('Input image')
        ax1.set_adjustable('box-forced')

        # Rescale histogram for better display
        hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))

        ax2.axis('off')
        ax2.imshow(hog_image_rescaled, cmap=pt.plt.cm.gray)
        ax2.set_title('Histogram of Oriented Gradients')
        ax1.set_adjustable('box-forced')
        pt.plt.show()
예제 #7
0
def show_model(model, evidence={}, soft_evidence={}, **kwargs):
    """
    References:
        http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer

    Ignore:
        pkg-config --libs-only-L libcgraph
        sudo apt-get  install libgraphviz-dev -y
        sudo apt-get  install libgraphviz4 -y

        # sudo apt-get install pkg-config
        sudo apt-get install libgraphviz-dev
        # pip install git+git://github.com/pygraphviz/pygraphviz.git
        pip install pygraphviz
        python -c "import pygraphviz; print(pygraphviz.__file__)"

        sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"
        python3 -c "import pygraphviz; print(pygraphviz.__file__)"
    """
    if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'):
        draw_tree_model(model, **kwargs)
        return

    import plottool_ibeis as pt
    import networkx as netx
    import matplotlib as mpl
    fnum = pt.ensure_fnum(None)
    fig = pt.figure(fnum=fnum, pnum=(3, 1, (slice(0, 2), 0)), doclf=True)  # NOQA
    #fig = pt.figure(fnum=fnum, pnum=(3, 2, (1, slice(1, 2))), doclf=True)  # NOQA
    ax = pt.gca()
    var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])}

    netx_graph = (model)
    #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"'
    #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR'

    pos = get_hacked_pos(netx_graph)
    #netx.nx_agraph.pygraphviz_layout(netx_graph)
    #pos = netx.nx_agraph.pydot_layout(netx_graph, prog='dot')
    #pos = netx.nx_agraph.graphviz_layout(netx_graph)

    drawkw = dict(pos=pos, ax=ax, with_labels=True, node_size=1500)
    if evidence is not None:
        node_colors = [
            # (pt.TRUE_BLUE
            (pt.WHITE
             if node not in soft_evidence else
             pt.LIGHT_PINK)
            if node not in evidence
            else pt.FALSE_RED
            for node in netx_graph.nodes()]

        for node in netx_graph.nodes():
            cpd = model.var2_cpd[node]
            if cpd.ttype == 'score':
                pass
        drawkw['node_color'] = node_colors

    netx.draw(netx_graph, **drawkw)

    show_probs = True
    if show_probs:
        textprops = {
            'family': 'monospace',
            'horizontalalignment': 'left',
            #'horizontalalignment': 'center',
            #'size': 12,
            'size': 8,
        }

        textkw = dict(
            xycoords='data', boxcoords='offset points', pad=0.25,
            framewidth=True, arrowprops=dict(arrowstyle='->'),
            #bboxprops=dict(fc=node_attr['fillcolor']),
        )

        netx_nodes = model.nodes(data=True)
        node_key_list = ut.get_list_column(netx_nodes, 0)
        pos_list = ut.dict_take(pos, node_key_list)

        artist_list = []
        offset_box_list = []
        for pos_, node in zip(pos_list, netx_nodes):
            x, y = pos_
            variable = node[0]

            cpd = model.var2_cpd[variable]

            prior_marg = (cpd if cpd.evidence is None else
                          cpd.marginalize(cpd.evidence, inplace=False))

            prior_text = None

            text = None
            if variable in evidence:
                text = cpd.variable_statenames[evidence[variable]]
            elif variable in var2_post:
                post_marg = var2_post[variable]
                text = pgm_ext.make_factor_text(post_marg, 'post')
                prior_text = pgm_ext.make_factor_text(prior_marg, 'prior')
            else:
                if len(evidence) == 0 and len(soft_evidence) == 0:
                    prior_text = pgm_ext.make_factor_text(prior_marg, 'prior')

            show_post = kwargs.get('show_post', False)
            show_prior = kwargs.get('show_prior', False)
            show_prior = True
            show_post = True

            show_ev = (evidence is not None and variable in evidence)
            if (show_post or show_ev) and text is not None:
                offset_box = mpl.offsetbox.TextArea(text, textprops)
                artist = mpl.offsetbox.AnnotationBbox(
                    # offset_box, (x + 5, y), xybox=(20., 5.),
                    offset_box, (x, y + 5), xybox=(4., 20.),
                    #box_alignment=(0, 0),
                    box_alignment=(.5, 0),
                    **textkw)
                offset_box_list.append(offset_box)
                artist_list.append(artist)

            if show_prior and prior_text is not None:
                offset_box2 = mpl.offsetbox.TextArea(prior_text, textprops)
                artist2 = mpl.offsetbox.AnnotationBbox(
                    # offset_box2, (x - 5, y), xybox=(-20., -15.),
                    # offset_box2, (x, y - 5), xybox=(-15., -20.),
                    offset_box2, (x, y - 5), xybox=(-4, -20.),
                    #box_alignment=(1, 1),
                    box_alignment=(.5, 1),
                    **textkw)
                offset_box_list.append(offset_box2)
                artist_list.append(artist2)

        for artist in artist_list:
            ax.add_artist(artist)

        xmin, ymin = np.array(pos_list).min(axis=0)
        xmax, ymax = np.array(pos_list).max(axis=0)
        num_annots = len(model.ttype2_cpds['name'])
        if num_annots > 4:
            ax.set_xlim((xmin - 40, xmax + 40))
            ax.set_ylim((ymin - 50, ymax + 50))
            fig.set_size_inches(30, 7)
        else:
            ax.set_xlim((xmin - 42, xmax + 42))
            ax.set_ylim((ymin - 50, ymax + 50))
            fig.set_size_inches(23, 7)
        fig = pt.gcf()

        title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,)
        map_assign = kwargs.get('map_assign', None)
        #max_marginal_list = []
        #for name, marginal in marginalized_joints.items():
        #    states = list(ut.iprod(*marginal.statenames))
        #    vals = marginal.values.ravel()
        #    x = vals.argmax()
        #    max_marginal_list += ['P(' + ', '.join(states[x]) + ') = ' + str(vals[x])]
        # title += str(marginal)
        top_assignments = kwargs.get('top_assignments', None)
        if top_assignments is not None:
            map_assign, map_prob = top_assignments[0]
            if map_assign is not None:
                # title += '\nMAP=' + ut.repr2(map_assign, strvals=True)
                title += '\nMAP: ' + map_assign + ' @' + '%.2f%%' % (100 * map_prob,)
        if kwargs.get('show_title', True):
            pt.set_figtitle(title, size=14)
        #pt.set_xlabel()

        def hack_fix_centeralign():
            if textprops['horizontalalignment'] == 'center':
                print('Fixing centeralign')
                fig = pt.gcf()
                fig.canvas.draw()

                # Superhack for centered text. Fix bug in
                # /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py
                # /usr/local/lib/python2.7/dist-packages/matplotlib/text.py
                for offset_box in offset_box_list:
                    offset_box.set_offset
                    z = offset_box._text.get_window_extent()
                    (z.x1 - z.x0) / 2
                    offset_box._text
                    T = offset_box._text.get_transform()
                    A = mpl.transforms.Affine2D()
                    A.clear()
                    A.translate((z.x1 - z.x0) / 2, 0)
                    offset_box._text.set_transform(T + A)
        hack_fix_centeralign()
    top_assignments = kwargs.get('top_assignments', None)
    if top_assignments is not None:
        bin_labels = ut.get_list_column(top_assignments, 0)
        bin_vals =  ut.get_list_column(top_assignments, 1)

        # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels]

        pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))),
                          transpose=True,
                          use_darkbackground=False,
                          #xtick_rotation=-10,
                          ylabel='Prob', xlabel='assignment')
        pt.set_title('Assignment probabilities')
예제 #8
0
파일: bayes.py 프로젝트: warunanc/ibeis
def show_model(model, evidence={}, soft_evidence={}, **kwargs):
    """
    References:
        http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer

    Ignore:
        pkg-config --libs-only-L libcgraph
        sudo apt-get  install libgraphviz-dev -y
        sudo apt-get  install libgraphviz4 -y

        # sudo apt-get install pkg-config
        sudo apt-get install libgraphviz-dev
        # pip install git+git://github.com/pygraphviz/pygraphviz.git
        pip install pygraphviz
        python -c "import pygraphviz; print(pygraphviz.__file__)"

        sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"
        python3 -c "import pygraphviz; print(pygraphviz.__file__)"

    CommandLine:
        python -m ibeis.algo.hots.bayes --exec-show_model --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots.bayes import *  # NOQA
        >>> model = '?'
        >>> evidence = {}
        >>> soft_evidence = {}
        >>> result = show_model(model, evidence, soft_evidence)
        >>> print(result)
        >>> ut.quit_if_noshow()
        >>> import plottool_ibeis as pt
        >>> ut.show_if_requested()
    """
    if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'):
        draw_tree_model(model, **kwargs)
        return

    import plottool_ibeis as pt
    import networkx as netx
    fnum = pt.ensure_fnum(None)
    netx_graph = (model)
    #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"'
    #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR'

    pos_dict = get_hacked_pos(netx_graph)
    #pos_dict = netx.nx_agraph.pygraphviz_layout(netx_graph)
    #pos = netx.nx_agraph.nx_pydot.pydot_layout(netx_graph, prog='dot')
    #pos_dict = netx.nx_agraph.graphviz_layout(netx_graph)

    textprops = {
        'family': 'monospace',
        'horizontalalignment': 'left',
        #'horizontalalignment': 'center',
        #'size': 12,
        'size': 8,
    }

    netx_nodes = model.nodes(data=True)
    node_key_list = ut.get_list_column(netx_nodes, 0)
    pos_list = ut.dict_take(pos_dict, node_key_list)

    var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])}

    prior_text = None
    post_text = None
    evidence_tas = []
    post_tas = []
    prior_tas = []
    node_color = []

    has_inferred = evidence or var2_post
    if has_inferred:
        ignore_prior_with_ttype = [SCORE_TTYPE, MATCH_TTYPE]
        show_prior = False
    else:
        ignore_prior_with_ttype = []
        #show_prior = True
        show_prior = False

    dpy = 5
    dbx, dby = (20, 20)
    takw1 = {'bbox_align': (.5, 0), 'pos_offset': [0, dpy], 'bbox_offset': [dbx, dby]}
    takw2 = {'bbox_align': (.5, 1), 'pos_offset': [0, -dpy], 'bbox_offset': [-dbx, -dby]}

    name_colors = pt.distinct_colors(max(model.num_names, 10))
    name_colors = name_colors[:model.num_names]

    #cmap_ = 'hot' #mx = 0.65 #mn = 0.15
    cmap_, mn, mx = 'plasma', 0.15, 1.0
    _cmap = pt.plt.get_cmap(cmap_)
    def cmap(x):
        return _cmap((x * mx) + mn)

    for node, pos in zip(netx_nodes, pos_list):
        variable = node[0]
        cpd = model.var2_cpd[variable]
        prior_marg = (cpd if cpd.evidence is None else
                      cpd.marginalize(cpd.evidence, inplace=False))

        show_evidence = variable in evidence
        show_prior = cpd.ttype not in ignore_prior_with_ttype
        show_post = variable in var2_post
        show_prior |= cpd.ttype not in ignore_prior_with_ttype

        post_marg = None

        if show_post:
            post_marg = var2_post[variable]

        def get_name_color(phi):
            order = phi.values.argsort()[::-1]
            if len(order) < 2:
                dist_next = phi.values[order[0]]
            else:
                dist_next = phi.values[order[0]] - phi.values[order[1]]
            dist_total = (phi.values[order[0]])
            confidence = (dist_total * dist_next) ** (2.5 / 4)
            #print('confidence = %r' % (confidence,))
            color = name_colors[order[0]]
            color = pt.color_funcs.desaturate_rgb(color, 1 - confidence)
            color = np.array(color)
            return color

        if variable in evidence:
            if cpd.ttype == SCORE_TTYPE:
                cmap_index = evidence[variable] / (cpd.variable_card - 1)
                color = cmap(cmap_index)
                color = pt.lighten_rgb(color, .4)
                color = np.array(color)
                node_color.append(color)
            elif cpd.ttype == NAME_TTYPE:
                color = name_colors[evidence[variable]]
                color = np.array(color)
                node_color.append(color)
            else:
                color = pt.FALSE_RED
                node_color.append(color)
        #elif variable in soft_evidence:
        #    color = pt.LIGHT_PINK
        #    show_prior = True
        #    color = get_name_color(prior_marg)
        #    node_color.append(color)
        else:
            if cpd.ttype == NAME_TTYPE and post_marg is not None:
                color = get_name_color(post_marg)
                node_color.append(color)
            elif cpd.ttype == MATCH_TTYPE and post_marg is not None:
                color = cmap(post_marg.values[1])
                color = pt.lighten_rgb(color, .4)
                color = np.array(color)
                node_color.append(color)
            else:
                #color = pt.WHITE
                color = pt.NEUTRAL
                node_color.append(color)

        if show_prior:
            if variable in soft_evidence:
                prior_color = pt.LIGHT_PINK
            else:
                prior_color = None
            prior_text = pgm_ext.make_factor_text(prior_marg, 'prior')
            prior_tas.append(dict(text=prior_text, pos=pos, color=prior_color, **takw2))
        if show_evidence:
            _takw1 = takw1
            if cpd.ttype == SCORE_TTYPE:
                _takw1 = takw2
            evidence_text = cpd.variable_statenames[evidence[variable]]
            if isinstance(evidence_text, int):
                evidence_text = '%d/%d' % (evidence_text + 1, cpd.variable_card)
            evidence_tas.append(dict(text=evidence_text, pos=pos, color=color, **_takw1))
        if show_post:
            _takw1 = takw1
            if cpd.ttype == MATCH_TTYPE:
                _takw1 = takw2
            post_text = pgm_ext.make_factor_text(post_marg, 'post')
            post_tas.append(dict(text=post_text, pos=pos, color=None, **_takw1))

    def trnps_(dict_list):
        """ tranpose dict list """
        list_dict = ut.ddict(list)
        for dict_ in dict_list:
            for key, val in dict_.items():
                list_dict[key + '_list'].append(val)
        return list_dict

    takw1_ = trnps_(post_tas + evidence_tas)
    takw2_ = trnps_(prior_tas)

    # Draw graph
    if has_inferred:
        pnum1 = (3, 1, (slice(0, 2), 0))
    else:
        pnum1 = None

    fig = pt.figure(fnum=fnum, pnum=pnum1, doclf=True)  # NOQA
    ax = pt.gca()
    #print('node_color = %s' % (ut.repr3(node_color),))
    drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1500,
                  node_color=node_color)
    netx.draw(netx_graph, **drawkw)

    hacks = []
    if len(post_tas + evidence_tas):
        hacks.append(pt.draw_text_annotations(textprops=textprops, **takw1_))
    if prior_tas:
        hacks.append(pt.draw_text_annotations(textprops=textprops, **takw2_))

    xmin, ymin = np.array(pos_list).min(axis=0)
    xmax, ymax = np.array(pos_list).max(axis=0)
    num_annots = len(model.ttype2_cpds[NAME_TTYPE])
    if num_annots > 4:
        ax.set_xlim((xmin - 40, xmax + 40))
        ax.set_ylim((ymin - 50, ymax + 50))
        fig.set_size_inches(30, 7)
    else:
        ax.set_xlim((xmin - 42, xmax + 42))
        ax.set_ylim((ymin - 50, ymax + 50))
        fig.set_size_inches(23, 7)
    fig = pt.gcf()

    title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,)
    map_assign = kwargs.get('map_assign', None)

    top_assignments = kwargs.get('top_assignments', None)
    if top_assignments is not None:
        map_assign, map_prob = top_assignments[0]
        if map_assign is not None:
            def word_insert(text):
                return '' if len(text) == 0 else text + ' '
            title += '\n%sMAP: ' % (word_insert(kwargs.get('method', '')))
            title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,)
    if kwargs.get('show_title', True):
        pt.set_figtitle(title, size=14)

    for hack in hacks:
        hack()

    # Hack in colorbars
    if has_inferred:
        pt.colorbar(np.linspace(0, 1, len(name_colors)), name_colors, lbl=NAME_TTYPE,
                    ticklabels=model.ttype2_template[NAME_TTYPE].basis, ticklocation='left')

        basis = model.ttype2_template[SCORE_TTYPE].basis
        scalars = np.linspace(0, 1, len(basis))
        scalars = np.linspace(0, 1, 100)
        colors = pt.scores_to_color(scalars, cmap_=cmap_, reverse_cmap=False,
                                    cmap_range=(mn, mx))
        colors = [pt.lighten_rgb(c, .4) for c in colors]

        if ut.list_type(basis) is int:
            pt.colorbar(scalars, colors, lbl=SCORE_TTYPE, ticklabels=np.array(basis) + 1)
        else:
            pt.colorbar(scalars, colors, lbl=SCORE_TTYPE, ticklabels=basis)
            #print('basis = %r' % (basis,))

    # Draw probability hist
    if has_inferred and top_assignments is not None:
        bin_labels = ut.get_list_column(top_assignments, 0)
        bin_vals =  ut.get_list_column(top_assignments, 1)

        # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels]

        pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))),
                          transpose=True,
                          use_darkbackground=False,
                          #xtick_rotation=-10,
                          ylabel='Prob', xlabel='assignment')
        pt.set_title('Assignment probabilities')