def viz_textbb(name,text_im, charBB_list, wordBB,senBB, alpha=1.0): """ text_im : image containing text charBB_list : list of 2x4xn_i bounding-box matrices wordBB : 2x4xm matrix of word coordinates """ plt.close(1) plt.figure(1,figsize=(15,15)) plt.imshow(text_im) H,W = text_im.shape[:2] # plot the character-BB: # for i in range(len(charBB_list)): # bbs = charBB_list[i] # ni = bbs.shape[-1] # for j in range(ni): # bb = bbs[:,:,j] # bb = np.c_[bb,bb[:,0]] # plt.plot(bb[0,:], bb[1,:], 'r', alpha=alpha/2) # # plot the word-BB: # for i in range(wordBB.shape[-1]): # bb = wordBB[:,:,i] # bb = np.c_[bb,bb[:,0]] # plt.plot(bb[0,:], bb[1,:], 'g', alpha=alpha) # # visualize the indiv vertices: # vcol = ['r','g','b','k'] # for j in range(4): # plt.scatter(bb[0,j],bb[1,j],color=vcol[j]) for i in range(senBB.shape[-1]): bb = senBB[:,:,i] bb = np.c_[bb,bb[:,0]] plt.plot(bb[0,:], bb[1,:], 'g', alpha=alpha) # visualize the indiv vertices: vcol = ['r','g','b','k'] for j in range(4): plt.scatter(bb[0,j],bb[1,j],color=vcol[j]) plt.gca().set_xlim([0,W-1]) plt.gca().set_ylim([H-1,0]) # plt.show(block=False) plt.savefig('img/' + name + '.jpg')
number = get_all_sheets(in_file, raw_file) pages = range(1, number + 1) for i in pages: raw_sheet = raw_file + '_Tank_' + str(i) + '.xls' X_min, X_max, Y_min, Y_max, scaler = scale( X_length, raw_sheet, frames, start, end) # important to not mess up: X0 = X_min + dist_from_wall Xn = X_max - dist_from_wall Y0 = Y_min + dist_from_wall Yn = Y_max - dist_from_wall Y_half = (Y_max - Y_min) / 2 Y_fourth = (Y_max - Y_min) / 4 Y_third = (Y_max - Y_min) / 3 Y_half_lim = Y_max - Y_half Y_fourth_lim = Y_max - Y_fourth Y_3fourth_lim = Y_max - 3 * (Y_fourth) Y_third_lim = Y_max - Y_third file_name = raw_file + '_Tank_' + str(i) xls_input = raw_sheet + '.txt' XY = heat_map(X0, Xn, Y0, Yn, xls_input, frame_rate, Y_half_lim, Y_fourth_lim, Y_3fourth_lim, Y_third_lim, file_name, name) calc("output/Extracted_data_" + name + ".xls") plot("output/Extracted_data_" + name + ".xls", name) os.chdir(og)
#Metadata metrics: [VIDEO_FPS, Metric, METADATA], [VIDEO_NUM_FRAMES, Metric, METADATA], [VIDEO_SAMPLING_INTERVAL, Metric, METADATA], [AUDIO_FPS, Metric, METADATA], [AUDIO_NUM_SAMPLES, Metric, METADATA], [AUDIO_SAMPLING_INTERVAL, Metric, METADATA], #Other metrics: [AUDIO_TRACE, TimeMetric, AUDIO, identity, ag(AUDIO_SAMPLING_INTERVAL)], ] mm = VideoMetricsManager(f, NpyStorageInterface(), metrics_definitions, metrics_dict={}) mm.get_metrics([VIDEO_NUM_FRAMES, VIDEO_FPS, VIDEO_SAMPLING_INTERVAL, AUDIO_NUM_SAMPLES, AUDIO_FPS, AUDIO_SAMPLING_INTERVAL, AUDIO_TRACE, ], #force_resave=True, ) # Prove it worked by plotting the audio from the video :) import plt plt.ioff() plt.plot(mm.get_metrics([AUDIO_TRACE])[AUDIO_TRACE].data) plt.show()
# x = Dense(100)(x) # x = BatchNormalization()(x) # x = Activation('relu')(x) x = Dense(1)(x) ##################################################### model = Model(inputs = [u, m], outputs = x) model.compile(optimizer= SGD(lr = .01, momentum = .9), loss = 'mse', metrics = ['mse']) # due to regularization terms # Train the model r = model.fit(X_tr, y_tr, epochs=epochs, batch_size=128, validation_data= [X_te, y_te]) # plot losses plt.plot(r.history['loss'], label="train loss") plt.plot(r.history['val_loss'], label="test loss") plt.legend() plt.show() # plot mse plt.plot(r.history['mean_squared_error'], label="train mse") plt.plot(r.history['val_mean_squared_error'], label="test mse") plt.legend() plt.show()
x, 500, FixedStep(0.1)) points_second, x_second = g_second.gradient_descent(x, 80, FixedStep(1)) points_second_mom, x_second_mom = g_second_mom.gradient_descent( x, 500, FixedStep(1)) points_bfgs, x_bfgs = g_bfgs.gradient_descent(x, 500, FixedStep(1)) points_bfgs_mom, x_bfgs_mom = g_bfgs_mom.gradient_descent(x, 500, FixedStep(1)) # points_cr, x_cr = g_cr.gradient_descent(x, 100, FixedStep(-1)) print "Minima achieved at (without momentum) : ", x_first print "Minima achieved at (with momentum) : ", x_first_mom print "Minima achieved at for second order (without momentum) : ", x_second print "Minima achieved at for second order (with momentum) : ", x_second_mom print "Minima achieved at for bfgs (without momentum) : ", x_bfgs print "Minima achieved at for bfgs (with momentum) : ", x_bfgs_mom # print "Minima achieved at for Cubic Regularization (without momentum) : ", x_cr plot(q, q.domain()[0], q.domain()[1], [(points_first, "First order"), (points_first_mom, "First order with momentum"), (points_bfgs, "BFGS without momentum"), (points_bfgs_mom, "BFGS with momentum"), (points_second, "Second order"), (points_second_mom, "Second order with momentum") ]) #, (points_cr, "Cubic Regularization") ]) plot_convergence_rate(q, [0, 500], [ (points_first, "First order"), (points_first_mom, "First order with momentum"), (points_bfgs, "BFGS without momentum"), (points_bfgs_mom, "BFGS with momentum"), (points_second, "Second order"), (points_second_mom, "Second order with momentum") ]) #, (points_cr, "Cubic Regularization")])
], # Other metrics: [ AUDIO_TRACE, TimeMetric, AUDIO, identity, ag(AUDIO_SAMPLING_INTERVAL) ], ] mm = VideoMetricsManager(f, NpyStorageInterface(), metrics_definitions, metrics_dict={}) mm.get_metrics([ VIDEO_NUM_FRAMES, VIDEO_FPS, VIDEO_SAMPLING_INTERVAL, AUDIO_NUM_SAMPLES, AUDIO_FPS, AUDIO_SAMPLING_INTERVAL, AUDIO_TRACE, ], # force_resave=True, ) # Prove it worked by plotting the audio from the video :) import plt plt.ioff() plt.plot(mm.get_metrics([AUDIO_TRACE])[AUDIO_TRACE].data) plt.show()
import joblib import matplotlib.pyplot import plt from matrix_analyse_report_anomaly import * model = joblib.load(model.pkl) yhat = model.predict(x_test) plt.plot(x_list, rmses) plt.ylabel("Errors Values") file_number = re.findall('\d+', file) print("the file_number is:", file_number) plt.title(file_number[0] + ' ' + 'Errors Distribution') # plt.title(file + ' ' + 'Errors Distribution') plt.show()
def ploty(arrY, c=plot_defaultStyle, logY=False, logX=False, hold=None, smartTranspose=True, logZeroOffset=.01, figureNo=None): """ arrY is a "table" of y1,...,yn values x-values of 0,1,2,3,4 are used as needed if hold is not None: if hold is True turn plothold on before drawing else turn plothold off before drawing otherwise do nothing about current hold setting if logY or logX the respective axis is shown in log10 (after applying abs() and adding logZeroOffset) if smartTranspose: transpose tables if that makes fewer graphs with each more data-points if figureNo is not None: use that figure instead and switch back to current afterwards """ arrY = N.asarray(arrY) if hold is not None: plothold(hold, figureNo) if len(arrY.shape) == 1 and not logX: #if logX: # raise ValueError, 'Cannot use logX=True to plot x="axis-index"' #plotxy(arrY) # CHECK import plt if figureNo is not None: _oldActive = plt.interface._active #plotFigure(figureNo) # would Raise !! plt.interface._active = plt.interface._figure[figureNo] #fig = plt.interface._figure[figureNo] if logY: arrY = N.log10(abs(arrY) + logZeroOffset) plt.plot(arrY, _col(c)) if figureNo is not None: plt.interface._active = _oldActive else: if len(arrY.shape) == 1: # !! logX is True n = arrY.shape[0] x = N.arange(n) else: if smartTranspose and arrY.shape[0] > arrY.shape[1]: arrY = N.transpose(arrY) n = arrY.shape[1] x = N.arange(n) plotxy(x, arrY, c, logY, logX, smartTranspose=smartTranspose, logZeroOffset=logZeroOffset, figureNo=figureNo)
def plotxy(arr1, arr2=None, c=plot_defaultStyle, logY=False, logX=False, hold=None, smartTranspose=True, logZeroOffset=.01, figureNo=None): """ arr1 is a "table" of x,y1,...,yn values if arr2 is given than arr1 contains only the x values and arr2 is "table" y1,...,y2 if hold is not None: if hold is True turn plothold on before drawing else turn plothold off before drawing otherwise do nothing about current hold setting if logY or logX the respective axis is shown in log10 (after applying abs() and adding logZeroOffset) if smartTranspose: transpose tables if that makes fewer graphs with each more data-points if figureNo is not None: use that figure instead and switch back to current afterwards """ arr1 = N.asarray(arr1) if arr2 is not None: if type(arr2) == str: c = arr2 arr2 = None else: arr2 = N.asarray(arr2) if smartTranspose and len( arr1.shape) > 1 and arr1.shape[0] > arr1.shape[1]: arr1 = N.transpose(arr1) if arr2 is None: arr2 = arr1[1:] arr1 = arr1[:1] elif smartTranspose and len( arr2.shape) > 1 and arr2.shape[0] > arr2.shape[1]: arr2 = N.transpose(arr2) # 20040804 if arr1.dtype.type == N.uint32: arr1 = arr1.astype(N.float64) if arr2.dtype.type == N.uint32: arr2 = arr2.astype(N.float64) x = arr1 arr = arr2 if logX: x = N.log10(abs(x) + logZeroOffset) if logY: arr = N.log10(abs(arr) + logZeroOffset) import plt if figureNo is not None: _oldActive = plt.interface._active #plotFigure(figureNo) # would Raise !! plt.interface._active = plt.interface._figure[figureNo] #fig = plt.interface._figure[figureNo] if hold is not None: plothold(hold) if len(arr.shape) == 1: plt.plot(x, arr, _col(c)) else: data = [] for i in range(arr.shape[0]): data.extend((x, arr[i], _col(c, overwriteHold=i > 0))) plt.plot(*data) if figureNo is not None: plt.interface._active = _oldActive