예제 #1
0
def apply_fst_rule(net):
    """
    Apply the Fusion of Series Transitions (FST) rule

    Parameters
    --------------
    net
        Reset Inhibitor net
    """
    cont = True
    while cont:
        cont = False
        for p, t, u in itertools.product(net.places, net.transitions, net.transitions):
            if (len(list(p.in_arcs)) == 1 and list(p.in_arcs)[0].source == t) and \
                    (len(list(p.out_arcs)) == 1 and list(p.out_arcs)[0].target == u) and \
                    (len(list(u.in_arcs)) == 1 and list(u.in_arcs)[0].source == p) and \
                    (len(post_set(t).intersection(post_set(u))) == 0) and \
                    (set().union(*[post_set(place, properties.INHIBITOR_ARC) for place in post_set(u)]) == post_set(p,
                                                                                                                      properties.INHIBITOR_ARC)) and \
                    (set().union(*[post_set(place, properties.RESET_ARC) for place in post_set(u)]) == post_set(p,
                                                                                                                  properties.RESET_ARC)) and \
                    (len(pre_set(u, properties.RESET_ARC)) == 0 and len(pre_set(u, properties.INHIBITOR_ARC)) == 0):
                if u.label == None:
                    remove_place(net, p)
                    for target in post_set(u):
                        add_arc_from_to(t, target, net)
                    remove_transition(net, u)
                    cont = True
                    break

    return net
예제 #2
0
파일: plus.py 프로젝트: pm4py/pm4py-core
def remove_initial_hidden_if_possible(net: PetriNet, im: Marking):
    """
    Remove initial hidden transition if possible

    Parameters
    ------------
    net
        Petri net
    im
        Initial marking

    Returns
    ------------
    net
        Petri net
    im
        Possibly different initial marking
    """
    source = list(im.keys())[0]
    first_hidden = list(source.out_arcs)[0].target
    target_places_first_hidden = [x.target for x in first_hidden.out_arcs]
    if len(target_places_first_hidden) == 1:
        target_place_first_hidden = target_places_first_hidden[0]
        if len(target_place_first_hidden.in_arcs) == 1:
            new_im = Marking()
            new_im[target_place_first_hidden] = 1
            remove_place(net, source)
            remove_transition(net, first_hidden)
            return net, new_im
    return net, im
예제 #3
0
def reduce_single_exit_transitions(net):
    """
    Reduces the number of the single exit transitions in the Petri net

    Parameters
    --------------
    net
        Petri net
    """
    cont = True
    while cont:
        cont = False
        single_exit_transitions = [t for t in net.transitions if t.label is None and len(t.out_arcs) == 1]
        for i in range(len(single_exit_transitions)):
            t = single_exit_transitions[i]
            target_place = list(t.out_arcs)[0].target
            source_places = [a.source for a in t.in_arcs]
            if len(target_place.in_arcs) == 1 and len(target_place.out_arcs) == 1:
                target_transition = list(target_place.out_arcs)[0].target
                remove_transition(net, t)
                remove_place(net, target_place)
                for p in source_places:
                    add_arc_from_to(p, target_transition, net)
                cont = True
                break
    return net
예제 #4
0
def apply_elp_rule(net, im=None):
    """
    Apply the Elimination of Self-Loop Places (ELP) rule

    Parameters
    --------------
    net
        Reset Inhibitor net
    """
    if im is None:
        im = {}
    cont = True
    while cont:
        cont = False
        for p in [place for place in net.places]:
            if (set([arc.target for arc in p.out_arcs]).issubset(set([arc.source for arc in p.in_arcs]))) and \
                    (p in im and im[p] >= 1) and \
                    (post_set(p, properties.RESET_ARC).union(set([arc.target for arc in p.out_arcs])) == set(
                        [arc.source for arc in p.in_arcs])) and \
                    (len(post_set(p, properties.INHIBITOR_ARC)) == 0):
                remove_place(net, p)
                cont = True
                break

    return net
예제 #5
0
파일: plus.py 프로젝트: pm4py/pm4py-core
def remove_final_hidden_if_possible(net: PetriNet, fm: Marking):
    """
    Remove final hidden transition if possible

    Parameters
    -------------
    net
        Petri net
    fm
        Final marking

    Returns
    -------------
    net
        Petri net
    """
    sink = list(fm.keys())[0]
    last_hidden = list(sink.in_arcs)[0].source
    source_places_last_hidden = [x.source for x in last_hidden.in_arcs]
    removal_possible = len(source_places_last_hidden) == 1
    for place in source_places_last_hidden:
        if len(place.out_arcs) > 1:
            removal_possible = False
            break
        else:
            source_trans = set([x.source for x in place.in_arcs])
            for trans in source_trans:
                if len(trans.out_arcs) > 1:
                    removal_possible = False
                    break
    if removal_possible:
        all_sources = set()
        remove_transition(net, last_hidden)
        i = 0
        while i < len(source_places_last_hidden):
            place = source_places_last_hidden[i]
            source_trans = set([x.source for x in place.in_arcs])
            for trans in source_trans:
                if trans not in all_sources:
                    all_sources.add(trans)
                    add_arc_from_to(trans, sink, net)
            remove_place(net, place)
            i = i + 1
    return net
예제 #6
0
def apply_fpp_rule(net, im=None):
    """
    Apply the Fusion of Parallel Places (FPP) rule

    Parameters
    --------------
    net
        Reset Inhibitor net
    """
    if im is None:
        im = {}
    cont = True
    while cont:
        cont = False
        for Q in power_set(net.places, 2):
            condition = True
            for x, y in itertools.product(Q, Q):
                if x != y:
                    if not ((pre_set(x) == pre_set(y)) and \
                            (post_set(x) == post_set(y)) and \
                            (post_set(x, properties.RESET_ARC) == post_set(y, properties.RESET_ARC)) and \
                            (post_set(x, properties.INHIBITOR_ARC) == post_set(y, properties.INHIBITOR_ARC))):
                        condition = False
                        break

            for x in Q:
                if x in im:
                    for y in Q:
                        if y in im and im[x] > im[y]:
                            if not (len(post_set(x, properties.INHIBITOR_ARC)) == 0):
                                condition = False
                                break
                    else:
                        continue
                    break
            # Q is a valid candidate
            if condition:
                # remove places except the first one
                for p in Q[1:]:
                    remove_place(net, p)
                cont = True
                break
    return net
예제 #7
0
def apply_a_rule(net):
    """
    Apply the Abstraction (A) rule

    Parameters
    --------------
    net
        Reset Inhibitor net
    """
    cont = True
    while cont:
        cont = False
        for Q, U in itertools.product(power_set(net.places, 1), power_set(net.transitions, 1)):
            for s, t in itertools.product([s for s in net.places if s not in Q],
                                          [t for t in net.transitions if (t not in U) and (t.label == None)]):
                if ((pre_set(t) == {s}) and \
                    (post_set(s) == {t}) and \
                    (pre_set(s) == set(U)) and \
                    (post_set(t) == set(Q)) and \
                    (len(set(itertools.product(pre_set(s), post_set(t))).intersection(
                        set([(arc.source, arc.target) for arc in net.arcs if
                             get_arc_type(arc) is None])))) == 0) and \
                        (len(pre_set(t, properties.RESET_ARC)) == 0) and \
                        (len(pre_set(t, properties.INHIBITOR_ARC)) == 0):

                    # check conditions on Q
                    condition = True
                    for q in Q:
                        if not ((post_set(s, properties.RESET_ARC) == post_set(q, properties.RESET_ARC)) and \
                                (post_set(s, properties.INHIBITOR_ARC) == post_set(q, properties.INHIBITOR_ARC))):
                            condition = False
                            break
                    # Q is a valid candidate
                    if condition:
                        for u in U:
                            for q in Q:
                                add_arc_from_to(u, q, net)
                        remove_place(net, s)
                        remove_transition(net, t)
                        cont = True
                        break
    return net
예제 #8
0
def binary_sequence_detection(net):
    c1 = None
    c2 = None
    for t1, t2 in itertools.product(net.transitions, net.transitions):
        if sequence_requirement(t1, t2):
            c1 = t1
            c2 = t2
            break
    if c1 is not None and c2 is not None:
        t = generate_new_binary_transition(c1, c2,
                                           pt_operator.Operator.SEQUENCE, net)
        net.transitions.add(t)
        for a in c1.in_arcs:
            pn_util.add_arc_from_to(a.source, t, net)
        for a in c2.out_arcs:
            pn_util.add_arc_from_to(t, a.target, net)
        for p in pn_util.post_set(c1):
            pn_util.remove_place(net, p)
        pn_util.remove_transition(net, c1)
        pn_util.remove_transition(net, c2)
        return net
    return None
예제 #9
0
def apply_fsp_rule(net, im=None, fm=None):
    """
    Apply the Fusion of Series Places (FSP) rule

    Parameters
    --------------
    net
        Reset Inhibitor net
    """
    if im is None:
        im = {}
    if fm is None:
        fm = {}
    cont = True
    while cont:
        cont = False
        for p, q, t in itertools.product(net.places, net.places, net.transitions):
            if t.label == None:  # only silent transitions may be removed either way
                if (len(t.in_arcs) == 1 and list(t.in_arcs)[0].source == p) and \
                        (len(t.out_arcs) == 1 and list(t.out_arcs)[0].target == q) and \
                        (len(post_set(p)) == 1 and list(post_set(p))[0] == t) and \
                        (len(pre_set(p).intersection(pre_set(q))) == 0) and \
                        (post_set(p, properties.RESET_ARC) == post_set(q, properties.RESET_ARC)) and \
                        (post_set(p, properties.INHIBITOR_ARC) == post_set(q, properties.INHIBITOR_ARC)) and \
                        (len(pre_set(t, properties.RESET_ARC)) == 0 and len(
                            pre_set(t, properties.INHIBITOR_ARC)) == 0):
                    # remove place p and transition t
                    remove_transition(net, t)
                    for source in pre_set(p):
                        add_arc_from_to(source, q, net)
                    remove_place(net, p)
                    if p in im:
                        del im[p]
                        im[q] = 1
                    cont = True
                    break

    return net, im, fm
예제 #10
0
def apply(tree, parameters=None):
    """
    Apply from Process Tree to Petri net

    Parameters
    -----------
    tree
        Process tree
    parameters
        Parameters of the algorithm

    Returns
    -----------
    net
        Petri net
    initial_marking
        Initial marking
    final_marking
        Final marking
    """
    if parameters is None:
        parameters = {}
    del parameters

    counts = Counts()
    net = PetriNet('imdf_net_' + str(time.time()))
    initial_marking = Marking()
    final_marking = Marking()
    source = get_new_place(counts)
    source.name = "source"
    sink = get_new_place(counts)
    sink.name = "sink"
    net.places.add(source)
    net.places.add(sink)
    initial_marking[source] = 1
    final_marking[sink] = 1
    initial_mandatory = check_tau_mandatory_at_initial_marking(tree)
    final_mandatory = check_tau_mandatory_at_final_marking(tree)
    if initial_mandatory:
        initial_place = get_new_place(counts)
        net.places.add(initial_place)
        tau_initial = get_new_hidden_trans(counts, type_trans="tau")
        net.transitions.add(tau_initial)
        add_arc_from_to(source, tau_initial, net)
        add_arc_from_to(tau_initial, initial_place, net)
    else:
        initial_place = source
    if final_mandatory:
        final_place = get_new_place(counts)
        net.places.add(final_place)
        tau_final = get_new_hidden_trans(counts, type_trans="tau")
        net.transitions.add(tau_final)
        add_arc_from_to(final_place, tau_final, net)
        add_arc_from_to(tau_final, sink, net)
    else:
        final_place = sink

    net, counts, last_added_place = recursively_add_tree(
        tree, tree, net, initial_place, final_place, counts, 0)

    reduction.apply_simple_reduction(net)

    places = list(net.places)
    for place in places:
        if len(place.out_arcs) == 0 and not place in final_marking:
            remove_place(net, place)
        if len(place.in_arcs) == 0 and not place in initial_marking:
            remove_place(net, place)

    return net, initial_marking, final_marking
예제 #11
0
    def transform_net(self, net0, initial_marking0, final_marking0, s_map, avg_time_starts):
        """
        Transform the source Petri net removing the initial and final marking, and connecting
        to each "initial" place a hidden timed transition mimicking the case start

        Parameters
        -------------
        net0
            Initial Petri net provided to the object
        initial_marking0
            Initial marking of the Petri net provided to the object
        final_marking0
            Final marking of the Petri net provided to the object
        s_map
            Stochastic map of transitions (EXPONENTIAL distribution since we assume a Markovian process)
        avg_time_starts
            Average time interlapsed between case starts

        Returns
        -------------
        net
            Petri net that will be simulated
        initial_marking
            Initial marking of the Petri net that will be simulated (empty)
        final_marking
            Final marking of the Petri net that will be simulated (empty)
        s_map
            Stochastic map of transitions enriched by new hidden case-generator transitions
        """
        # copy the Petri net object (assure that we do not change the original Petri net)
        [net1, initial_marking1, final_marking1] = copy([net0, initial_marking0, final_marking0])
        # on the copied Petri net, add a sucking transition for the final marking
        for index, place in enumerate(final_marking1):
            suck_transition = PetriNet.Transition("SUCK_TRANSITION" + str(index), None)
            net1.transitions.add(suck_transition)
            add_arc_from_to(place, suck_transition, net1)
            hidden_generator_distr = Exponential()
            hidden_generator_distr.scale = avg_time_starts
            s_map[suck_transition] = hidden_generator_distr
        # on the copied Petri net, remove both the place(s) in the initial marking and
        # the immediate transitions that are connected to it.
        target_places = []
        for place in initial_marking1:
            out_arcs = list(place.out_arcs)
            for target_arc in out_arcs:
                target_trans = target_arc.target
                if len(target_trans.in_arcs) == 1:
                    out_arcs_lev2 = list(target_trans.out_arcs)
                    for arc in out_arcs_lev2:
                        target_place = arc.target
                        target_places.append(target_place)
                    net1 = remove_transition(net1, target_trans)
            net1 = remove_place(net1, place)
        # add hidden case-generation transitions to the model.
        # all places that are left orphan by the previous operation are targeted.
        for index, place in enumerate(target_places):
            hidden_generator_trans = PetriNet.Transition("HIDDEN_GENERATOR_TRANS" + str(index), None)
            net1.transitions.add(hidden_generator_trans)
            add_arc_from_to(hidden_generator_trans, place, net1)
            hidden_generator_distr = Exponential()
            hidden_generator_distr.scale = avg_time_starts
            s_map[hidden_generator_trans] = hidden_generator_distr
        # the simulated Petri net is assumed to start from an empty initial and final marking
        initial_marking = Marking()
        final_marking = Marking()
        return net1, initial_marking, final_marking, s_map
def repair_sound_Model(s_net, rules_dict, support, confidence, lift, sound=1):
    """
    Repairing a bordered Petri net generated from Process tree to include long-term dependencies in it and
    create a precise Petri net. Soundness parameter is a given requirement.
    
    Parameter: 
        net (PetriNet): Generated Petri net of the log
        rules (dict) : Discovered rules with the association rule metrics values
        support (str): Threshold value for support
        confidence (str) : Threshold value for confidence 
        lift (str): Threshold value for confidence 
        sound (str) : Yes
    
    Return:
        net (PetriNet): Repaired Sound Petri net of the log
        rules (dict) : Added rules to the net with their association rule metrics values
    """
    rules = {}

    rules_dict = dict(sorted(rules_dict.items(), key=lambda item: item[1][2]))
    print("rules_dict", rules_dict)

    for pair, value in rules_dict.items():
        trans = None
        if value[2] < 1.001 or str(value[2]) < lift or str(
                value[0]) < support or str(value[1]) < confidence:
            tau_t = f"tau_{pair[0]}{pair[1]}"
            for t in s_net.transitions:
                s_place_valid = 0
                t_place_valid = 0
                if str(t) == str(tau_t):
                    trans = t
                    source_places = set([x.source for x in t.in_arcs])
                    for p in source_places:
                        s_place = f"ps_{pair[0]}"
                        if str(p) == s_place:
                            if sound == 'on' and len(p.out_arcs) > 1:
                                s_place_valid = 1
                            elif sound == None:
                                s_place_valid = -1
                                if len(p.out_arcs) == 1:
                                    p_utils.remove_place(s_net, p)

                        if sound == 'on' and len(p.out_arcs) == 1:
                            rules[pair] = value
                    target_places = set([x.target for x in t.out_arcs])
                    for p in target_places:
                        t_place = f"pt_{pair[1]}"
                        if str(p) == t_place:
                            if sound == 'on' and len(p.in_arcs) > 1:
                                t_place_valid = 1
                            elif sound == None:
                                t_place_valid = -1
                                if len(p.in_arcs) == 1:
                                    p_utils.remove_place(s_net, p)

                            if sound == 'on' and len(p.in_arcs) == 1:
                                rules[pair] = value
                    if s_place_valid == 1 and t_place_valid == 1:
                        s_net = p_utils.remove_transition(s_net, trans)
                        break
                    elif s_place_valid == -1 and t_place_valid == -1:
                        s_net = p_utils.remove_transition(s_net, trans)
                        break
        else:
            rules[pair] = value
    return s_net, rules