예제 #1
0
파일: vis.py 프로젝트: pm4py/pm4py-core
def save_vis_events_per_time_graph(log: Union[EventLog, pd.DataFrame],
                                   file_path: str):
    """
    Saves the events per time graph in the specified path

    Parameters
    ----------------
    log
        Log object
    file_path
        Destination path
    """
    if type(log) not in [pd.DataFrame, EventLog, EventStream]:
        raise Exception(
            "the method can be applied only to a traditional event log!")

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log)
        from pm4py.statistics.attributes.pandas import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(
            log, parameters=get_properties(log))
    else:
        from pm4py.statistics.attributes.log import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(
            log, parameters=get_properties(log))
    format = os.path.splitext(file_path)[1][1:]
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    graph_vis = graphs_visualizer.apply(
        graph[0],
        graph[1],
        variant=graphs_visualizer.Variants.DATES,
        parameters={"format": format})
    graphs_visualizer.save(graph_vis, file_path)
예제 #2
0
def execute_script():
    log = pm4py.read_xes("../tests/input_data/running-example.xes")
    dfg, sa, ea = pm4py.discover_dfg(log)
    tree = pm4py.discover_process_tree_inductive(log)
    heu_net = pm4py.discover_heuristics_net(log)
    net, im, fm = pm4py.discover_petri_net_alpha(log)
    bpmn = pm4py.convert_to_bpmn(tree)
    ts = ts_discovery.apply(log)
    x_cases, y_cases = case_statistics.get_kde_caseduration(log)

    gviz1 = dfg_visualizer.apply(dfg)
    gviz2 = tree_visualizer.apply(tree)
    gviz3 = hn_visualizer.apply(heu_net)
    gviz4 = pn_visualizer.apply(net, im, fm)
    gviz5 = bpmn_visualizer.apply(bpmn)
    gviz6 = ts_visualizer.apply(ts)
    gviz7 = graphs_visualizer.apply(x_cases, y_cases, variant=graphs_visualizer.Variants.CASES,
                                          parameters={graphs_visualizer.Variants.CASES.value.Parameters.FORMAT: "svg"})

    print("1", len(dfg_visualizer.serialize_dot(gviz1)))
    print("1", len(dfg_visualizer.serialize(gviz1)))
    print("2", len(tree_visualizer.serialize_dot(gviz2)))
    print("2", len(tree_visualizer.serialize(gviz2)))
    print("3", len(hn_visualizer.serialize(gviz3)))
    print("4", len(pn_visualizer.serialize_dot(gviz4)))
    print("4", len(pn_visualizer.serialize(gviz4)))
    print("5", len(bpmn_visualizer.serialize_dot(gviz5)))
    print("5", len(bpmn_visualizer.serialize(gviz5)))
    print("6", len(ts_visualizer.serialize_dot(gviz6)))
    print("6", len(ts_visualizer.serialize(gviz6)))
    print("7", len(graphs_visualizer.serialize(gviz7)))
예제 #3
0
파일: vis.py 프로젝트: pm4py/pm4py-core
def view_events_per_time_graph(log: Union[EventLog, pd.DataFrame],
                               format: str = "png"):
    """
    Visualizes the events per time graph

    Parameters
    -----------------
    log
        Log object
    format
        Format of the visualization (png, svg, ...)
    """
    if type(log) not in [pd.DataFrame, EventLog, EventStream]:
        raise Exception(
            "the method can be applied only to a traditional event log!")

    if check_is_pandas_dataframe(log):
        check_pandas_dataframe_columns(log)
        from pm4py.statistics.attributes.pandas import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(
            log, parameters=get_properties(log))
    else:
        from pm4py.statistics.attributes.log import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(
            log, parameters=get_properties(log))
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    graph_vis = graphs_visualizer.apply(
        graph[0],
        graph[1],
        variant=graphs_visualizer.Variants.DATES,
        parameters={"format": format})
    graphs_visualizer.view(graph_vis)
def execute_script():
    log = pm4py.read_xes(
        os.path.join("..", "tests", "input_data", "receipt.xes"))
    # calculates the graph:
    # values of y more distant from 0 signal executions that differ from the mainstream behavior
    x, y = locally_linear_embedding.apply(log)
    gviz = visualizer.apply(x,
                            y,
                            variant=visualizer.Variants.DATES,
                            parameters={
                                "title": "Locally Linear Embedding",
                                "format": "svg",
                                "y_axis": "Intensity"
                            })
    visualizer.view(gviz)
예제 #5
0
def view_events_per_time_graph(log: Union[EventLog, pd.DataFrame], format: str = "png"):
    """
    Visualizes the events per time graph

    Parameters
    -----------------
    log
        Log object
    format
        Format of the visualization (png, svg, ...)
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.attributes.pandas import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(log)
    else:
        from pm4py.statistics.attributes.log import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(log)
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.DATES,
                                          parameters={"format": format})
    graphs_visualizer.view(graph_vis)
예제 #6
0
def view_case_duration_graph(log: Union[EventLog, pd.DataFrame], format: str = "png"):
    """
    Visualizes the case duration graph

    Parameters
    -----------------
    log
        Log object
    format
        Format of the visualization (png, svg, ...)
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.traces.pandas import case_statistics
        graph = case_statistics.get_kde_caseduration(log)
    else:
        from pm4py.statistics.traces.log import case_statistics
        graph = case_statistics.get_kde_caseduration(log)
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.CASES,
                                          parameters={"format": format})
    graphs_visualizer.view(graph_vis)
예제 #7
0
파일: vis.py 프로젝트: pm4py/pm4py-core
def save_vis_events_distribution_graph(log: Union[EventLog, pd.DataFrame],
                                       file_path: str,
                                       distr_type: str = "days_week"):
    """
    Saves the distribution of the events in a picture file

    Parameters
    ----------------
    log
        Event log
    file_path
        Destination path (including the extension)
    distr_type
        Type of distribution (default: days_week):
        - days_month => Gets the distribution of the events among the days of a month (from 1 to 31)
        - months => Gets the distribution of the events among the months (from 1 to 12)
        - years => Gets the distribution of the events among the years of the event log
        - hours => Gets the distribution of the events among the hours of a day (from 0 to 23)
        - days_week => Gets the distribution of the events among the days of a week (from Monday to Sunday)
    """
    if type(log) not in [pd.DataFrame, EventLog, EventStream]:
        raise Exception(
            "the method can be applied only to a traditional event log!")

    format = os.path.splitext(file_path)[1][1:]
    title, x_axis, y_axis, x, y = __builds_events_distribution_graph(
        log, distr_type)
    parameters = copy(get_properties(log))
    parameters["title"] = title
    parameters["x_axis"] = x_axis
    parameters["y_axis"] = y_axis
    parameters["format"] = format
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    gviz = graphs_visualizer.apply(x,
                                   y,
                                   variant=graphs_visualizer.Variants.BARPLOT,
                                   parameters=parameters)
    graphs_visualizer.save(gviz, file_path)
예제 #8
0
파일: vis.py 프로젝트: pm4py/pm4py-core
def view_events_distribution_graph(log: Union[EventLog, pd.DataFrame],
                                   distr_type: str = "days_week",
                                   format="png"):
    """
    Shows the distribution of the events in the specified dimension

    Parameters
    ----------------
    log
        Event log
    distr_type
        Type of distribution (default: days_week):
        - days_month => Gets the distribution of the events among the days of a month (from 1 to 31)
        - months => Gets the distribution of the events among the months (from 1 to 12)
        - years => Gets the distribution of the events among the years of the event log
        - hours => Gets the distribution of the events among the hours of a day (from 0 to 23)
        - days_week => Gets the distribution of the events among the days of a week (from Monday to Sunday)
        - weeks => Gets the distribution of the events among the weeks of a year (from 0 to 52)
    format
        Format of the visualization (default: png)
    """
    if type(log) not in [pd.DataFrame, EventLog, EventStream]:
        raise Exception(
            "the method can be applied only to a traditional event log!")

    title, x_axis, y_axis, x, y = __builds_events_distribution_graph(
        log, distr_type)
    parameters = copy(get_properties(log))
    parameters["title"] = title
    parameters["x_axis"] = x_axis
    parameters["y_axis"] = y_axis
    parameters["format"] = format
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    gviz = graphs_visualizer.apply(x,
                                   y,
                                   variant=graphs_visualizer.Variants.BARPLOT,
                                   parameters=parameters)
    graphs_visualizer.view(gviz)
예제 #9
0
def save_vis_events_per_time_graph(log: Union[EventLog, pd.DataFrame], file_path: str):
    """
    Saves the events per time graph in the specified path

    Parameters
    ----------------
    log
        Log object
    file_path
        Destination path
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.attributes.pandas import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(log)
    else:
        from pm4py.statistics.attributes.log import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(log)
    format = file_path[file_path.index(".") + 1:].lower()
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.DATES,
                                          parameters={"format": format})
    graphs_visualizer.save(graph_vis, file_path)
예제 #10
0
def save_vis_case_duration_graph(log: Union[EventLog, pd.DataFrame], file_path: str):
    """
    Saves the case duration graph in the specified path

    Parameters
    ----------------
    log
        Log object
    file_path
        Destination path
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.traces.pandas import case_statistics
        graph = case_statistics.get_kde_caseduration(log)
    else:
        from pm4py.statistics.traces.log import case_statistics
        graph = case_statistics.get_kde_caseduration(log)
    format = file_path[file_path.index(".") + 1:].lower()
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.CASES,
                                          parameters={"format": format})
    graphs_visualizer.save(graph_vis, file_path)
예제 #11
0
if True:
    # ignore this part in true PowerBI executions
    import os
    import pandas as pd
    from pm4py.objects.log.util import dataframe_utils

    log_path = os.path.join("..", "..", "tests", "input_data", "running-example.csv")

    dataset = pd.read_csv(log_path)
    dataset = dataframe_utils.convert_timestamp_columns_in_df(dataset)

import pandas as pd

# this part is required because the dataframe provided by PowerBI has strings
dataset["time:timestamp"] = pd.to_datetime(dataset["time:timestamp"])
dataset = dataset.sort_values("time:timestamp")

from pm4py.statistics.traces.generic.pandas import case_statistics
from pm4py.visualization.graphs import visualizer as graphs_visualizer

x_cases, y_cases = case_statistics.get_kde_caseduration(dataset)

graph_cases = graphs_visualizer.apply(x_cases, y_cases, variant=graphs_visualizer.Variants.CASES,
                                      parameters={graphs_visualizer.Variants.CASES.value.Parameters.FORMAT: "png"})

graphs_visualizer.matplotlib_view(graph_cases)
예제 #12
0
if True:
    # ignore this part in true PowerBI executions
    from pm4py.objects.log.adapters.pandas import csv_import_adapter

    dataset = csv_import_adapter.import_dataframe_from_path(
        "C:/running-example.csv")

import pandas as pd
# this part is required because the dataframe provided by PowerBI has strings
dataset["time:timestamp"] = pd.to_datetime(dataset["time:timestamp"])

from pm4py.statistics.attributes.pandas import get as attributes_filter
from pm4py.visualization.graphs import visualizer as graphs_visualizer

# visualize events over time graph
x_dates, y_dates = attributes_filter.get_kde_date_attribute(dataset)
graph_dates = graphs_visualizer.apply(
    x_dates,
    y_dates,
    variant=graphs_visualizer.Variants.DATES,
    parameters={
        graphs_visualizer.Variants.DATES.value.Parameters.FORMAT: "png"
    })
graphs_visualizer.matplotlib_view(graph_dates)