예제 #1
0
        'late_conv_dict': {
            'conv_filter_list': [(512, 1), (512, 1)],
            'pool_filter_list': [None, None],
            'pool_stride_list': [None, None],
        },
        'dense_filter_size': 1,
        'final_pool_function': T.mean,
        'input_size': 128,
        'output_size': n_top,
        'p_dropout': 0.5
    }

    # Loading data
    print("Loading data...")
    X_tr, y_tr = utils.load_data('tr',
                                 exp_data_dir=exp_data_dir,
                                 use_real_data=use_real_data)
    X_va, y_va = utils.load_data('va',
                                 exp_data_dir=exp_data_dir,
                                 use_real_data=use_real_data)

    network, input_var, lr_var, train_func, val_func, pr_func = \
        utils.make_network(
            network_type, loss_function, lr, network_options
        )

    # Training
    utils.train(X_tr,
                y_tr,
                X_va,
                y_va,
예제 #2
0
        },
        'late_conv_dict': {
            'conv_filter_list': [(512, 1), (512, 1)],
            'pool_filter_list': [None, None],
            'pool_stride_list': [None, None],
        },
        'dense_filter_size': 1,
        'final_pool_function': T.mean,
        'input_size': 128,
        'output_size': 50,
        'p_dropout': 0.5
    }

    # Load data
    X_te, y_te = utils.load_data('te',
                                 exp_data_dir=exp_data_dir,
                                 use_real_data=True)

    # Make network
    network, input_var, pr_func = utils.make_network_test(
        network_type, network_options)

    fn_list = sorted(os.listdir(model_dir))
    score_list = list()
    for fn in fn_list:
        print('Processing model {}'.format(fn))
        param_fp = os.path.join(model_dir, fn)

        # Load params
        utils.load_model(param_fp, network)