'late_conv_dict': { 'conv_filter_list': [(512, 1), (512, 1)], 'pool_filter_list': [None, None], 'pool_stride_list': [None, None], }, 'dense_filter_size': 1, 'final_pool_function': T.mean, 'input_size': 128, 'output_size': n_top, 'p_dropout': 0.5 } # Loading data print("Loading data...") X_tr, y_tr = utils.load_data('tr', exp_data_dir=exp_data_dir, use_real_data=use_real_data) X_va, y_va = utils.load_data('va', exp_data_dir=exp_data_dir, use_real_data=use_real_data) network, input_var, lr_var, train_func, val_func, pr_func = \ utils.make_network( network_type, loss_function, lr, network_options ) # Training utils.train(X_tr, y_tr, X_va, y_va,
}, 'late_conv_dict': { 'conv_filter_list': [(512, 1), (512, 1)], 'pool_filter_list': [None, None], 'pool_stride_list': [None, None], }, 'dense_filter_size': 1, 'final_pool_function': T.mean, 'input_size': 128, 'output_size': 50, 'p_dropout': 0.5 } # Load data X_te, y_te = utils.load_data('te', exp_data_dir=exp_data_dir, use_real_data=True) # Make network network, input_var, pr_func = utils.make_network_test( network_type, network_options) fn_list = sorted(os.listdir(model_dir)) score_list = list() for fn in fn_list: print('Processing model {}'.format(fn)) param_fp = os.path.join(model_dir, fn) # Load params utils.load_model(param_fp, network)