예제 #1
0
def load_pointnet(model_path):
    model = Pointnet(num_classes=4, input_channels=72, use_xyz=False)
    if os.path.isfile(model_path):
        print("==> Loading from checkpoint '{}'".format(model_path))
        checkpoint = torch.load(model_path)
        epoch = checkpoint["epoch"]
        it = checkpoint.get("it", 0.0)
        best_prec = checkpoint["best_prec"]
        if model is not None and checkpoint["model_state"] is not None:
            model.load_state_dict(checkpoint["model_state"])
        print("==> Done")
    return model
예제 #2
0
    test_set = Kitti3DSemSeg(args.num_points, train=False)
    test_loader = DataLoader(test_set,
                             batch_size=args.batch_size,
                             shuffle=True,
                             pin_memory=True,
                             num_workers=0)

    # train_set = Indoor3DSemSeg(args.num_points)
    train_set = Kitti3DSemSeg(args.num_points)
    train_loader = DataLoader(train_set,
                              batch_size=args.batch_size,
                              pin_memory=True,
                              num_workers=0,
                              shuffle=True)

    model = Pointnet(num_classes=34, input_channels=6, use_xyz=True)
    # 设置设备
    device_name = "cpu"
    if torch.cuda.is_available():
        device_name = "cuda"
        torch.backends.cudnn.deterministic = True
        torch.cuda.manual_seed(0)

    device = torch.device(device_name)
    print(device)
    model.cuda()
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.weight_decay)

    lr_lbmd = lambda it: max(
예제 #3
0
        batch_size=args.batch_size,
        shuffle=True,
        pin_memory=True,
        num_workers=2,
    )

    train_set = Indoor3DSemSeg(args.num_points)
    train_loader = DataLoader(
        train_set,
        batch_size=args.batch_size,
        pin_memory=True,
        num_workers=2,
        shuffle=True,
    )

    model = Pointnet(num_classes=13, input_channels=6, use_xyz=True)
    model.cuda()
    print(model)
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])
    print("Model size = %i" % params)
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.weight_decay)

    lr_lbmd = lambda it: max(
        args.lr_decay**(int(it * args.batch_size / args.decay_step)),
        lr_clip / args.lr,
    )
    bnm_lmbd = lambda it: max(
        args.bn_momentum * args.bn_decay**
예제 #4
0
        batch_size=args.batch_size,
        shuffle=True,
        pin_memory=True,
        num_workers=2,
    )

    train_set = Indoor3DSemSeg(args.num_points)
    train_loader = DataLoader(
        train_set,
        batch_size=args.batch_size,
        pin_memory=True,
        num_workers=2,
        shuffle=True,
    )

    model = Pointnet(num_classes=13, input_channels=6, use_xyz=True)
    model.cuda()
    optimizer = optim.Adam(
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )

    lr_lbmd = lambda it: max(
        args.lr_decay ** (int(it * args.batch_size / args.decay_step)),
        lr_clip / args.lr,
    )
    bnm_lmbd = lambda it: max(
        args.bn_momentum
        * args.bn_decay ** (int(it * args.batch_size / args.decay_step)),
        bnm_clip,
    )
예제 #5
0
    visualization.custom_draw_geometry_with_key_callback(point_cloud)


if __name__ == "__main__":
    args = parser.parse_args()

    test_set = WaymoDatasetLoader(args.test_data_path, args.num_points)
    test_loader = DataLoader(
        test_set,
        batch_size=args.batch_size,
        shuffle=True,
        pin_memory=True,
        num_workers=2,
    )

    model = Pointnet(num_classes=2, input_channels=0, use_xyz=True)
    model.cuda()

    print("checkpoint filename: {}".format(args.checkpoint.split(".")[0]))

    # load status from checkpoint
    if args.checkpoint is not None:
        checkpoint_status = pt_utils.load_checkpoint(
            model, None, filename=args.checkpoint.split(".")[0])
        if checkpoint_status is not None:
            it, start_epoch, best_loss = checkpoint_status

    data_iter = iter(test_loader.__iter__())
    for data in data_iter:
        inputs, labels = data
예제 #6
0
gpu_index = paras.gpu
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_index
lr_clip = 1e-5
bnm_clip = 1e-2

if __name__ == "__main__":
    args = parser.parse_args()

    test_set = Indoor3DSemSeg(args.num_points, train=False)
    test_loader = DataLoader(test_set,
                             batch_size=args.batch_size,
                             shuffle=False,
                             pin_memory=True,
                             num_workers=2)

    model = Pointnet(3, input_channels=6).cuda()
    model.load_state_dict(
        torch.load(
            '/home1/xuhui/Pointnet2_PyTorch-master/pointnet2/train/checkpoints/poitnet2_semseg_best.pth.tar'
        )['model_state'])
    model.eval()

    # for i, data in tqdm.tqdm(enumerate(test_loader, 0), total=len(test_loader),
    #                              leave=False, desc='val'):
    for i, data in enumerate(test_loader):
        f = open(os.path.join(preds_path, str(i).zfill(2) + '.txt'), 'w')
        inputs, labels = data
        inputs = inputs.to('cuda', non_blocking=True)
        labels = labels.to('cuda', non_blocking=True)
        # print(labels)
        preds = model(inputs)