def _build(self, # pylint: disable=arguments-differ features, labels, params=None, config=None): """Build the different operation of the model.""" # Pre-process features and labels features, labels = self._preprocess(features, labels) results = self._call_graph_fn(features=features, labels=labels) loss = None train_op = None eval_metrics = None if Modes.is_infer(self.mode): predictions = self._build_predictions(results=results, features=features, labels=labels) extra_ops = self._build_extra_ops(results=results, features=features, labels=labels) else: _, loss = self._build_loss(results, features, labels) eval_metrics = self._build_eval_metrics(results, features, labels) if Modes.is_train(self.mode): train_op = self._build_train_op(loss) self._build_summary_op(results=results, features=features, labels=labels) predictions = self._build_predictions(results=results, features=features, labels=labels) extra_ops = self._build_extra_ops(results=results, features=features, labels=labels) track(predictions, tf.GraphKeys.PREDICTIONS) return EstimatorSpec(mode=self.mode, predictions=predictions, loss=loss, extra_ops=extra_ops, train_op=train_op, eval_metric_ops=eval_metrics)
def _build(self, features, labels=None, params=None, config=None): # Pre-process features and labels features, labels = self._preprocess(features, labels) results = self._call_graph_fn(inputs=features) if not isinstance(results, BridgeSpec): raise ValueError('`bridge_fn` should return a BridgeSpec.') loss = None train_op = None eval_metrics = None if Modes.is_infer(self.mode): predictions = self._build_predictions( results=results.results, features=features, labels=labels) else: losses, loss = self._build_loss(results, features, features) eval_metrics = self._build_eval_metrics(results.results, features, features) if Modes.is_train(self.mode): train_op = self._build_train_op(loss) self._build_summary_op(results=results.results, features=features, labels=labels) predictions = self._build_predictions( results=results.results, features=features, labels=labels) # We add 'useful' tensors to the graph collection so that we # can easly find them in our hooks/monitors. track(predictions, tf.GraphKeys.PREDICTIONS) return EstimatorSpec(mode=self.mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metrics)
def _build(self, features, labels, params=None, config=None): """Build the different operation of the model.""" # Pre-process features and labels features, labels = self._preprocess(features, labels) results = self._call_graph_fn(inputs=features) loss = None train_op = None eval_metrics = None if Modes.is_infer(self.mode): predictions = self._build_predictions(results=results, features=features, labels=labels) extra_ops = self._build_extra_ops(results=results, features=features, labels=labels) else: losses, loss = self._build_loss(results, features, labels) eval_metrics = self._build_eval_metrics(results, features, labels) if Modes.is_train(self.mode): train_op = self._build_train_op(loss) self._build_summary_op(results=results, features=features, labels=labels) predictions = self._build_predictions(results=results, features=features, labels=labels) extra_ops = self._build_extra_ops(results=results, features=features, labels=labels) # We add 'useful' tensors to the graph collection so that we # can easily find them in our hooks/monitors. track(predictions, tf.GraphKeys.PREDICTIONS) return EstimatorSpec(mode=self.mode, predictions=predictions, loss=loss, extra_ops=extra_ops, train_op=train_op, eval_metric_ops=eval_metrics)
def _build(self, features, labels=None, params=None, config=None): # Pre-process features and labels features, labels = self._preprocess(features, labels) results = self._call_graph_fn(features=features, labels=labels) if not isinstance(results, BridgeSpec): raise ValueError('`bridge_fn` should return a BridgeSpec.') loss = None train_op = None eval_metrics = None if Modes.is_infer(self.mode): predictions = self._build_predictions(results=results.results, features=features, labels=labels) else: _, loss = self._build_loss(results, features, features) eval_metrics = self._build_eval_metrics(results.results, features, features) if Modes.is_train(self.mode): train_op = self._build_train_op(loss) self._build_summary_op(results=results.results, features=features, labels=labels) predictions = self._build_predictions(results=results.results, features=features, labels=labels) track(predictions, tf.GraphKeys.PREDICTIONS) return EstimatorSpec(mode=self.mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metrics)