def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(Conv2D, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=getters.get_activation(activation) if activation else activation, use_bias=use_bias, kernel_initializer=getters.get_initializer(kernel_initializer), bias_initializer=getters.get_initializer(bias_initializer), kernel_regularizer=getters.get_regularizer(kernel_regularizer), bias_regularizer=getters.get_regularizer(bias_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), kernel_constraint=getters.get_constraint(kernel_constraint), bias_constraint=getters.get_constraint(bias_constraint), **kwargs)
def __init__(self, units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(Dense, self).__init__( units, activation=getters.get_activation(activation) if activation else activation, use_bias=use_bias, kernel_initializer=getters.get_initializer(kernel_initializer), bias_initializer=getters.get_initializer(bias_initializer), kernel_regularizer=getters.get_regularizer(kernel_regularizer), bias_regularizer=getters.get_regularizer(bias_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), kernel_constraint=getters.get_constraint(kernel_constraint), bias_constraint=getters.get_constraint(bias_constraint), **kwargs)
def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., **kwargs): super(SimpleRNN, self).__init__( units=units, activation=getters.get_activation(activation), use_bias=use_bias, kernel_initializer=getters.get_initializer(kernel_initializer), recurrent_initializer=getters.get_initializer(recurrent_initializer), bias_initializer=getters.get_initializer(bias_initializer), kernel_regularizer=getters.get_regularizer(kernel_regularizer), recurrent_regularizer=getters.get_regularizer(recurrent_regularizer), bias_regularizer=getters.get_regularizer(bias_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), kernel_constraint=getters.get_constraint(kernel_constraint), recurrent_constraint=getters.get_constraint(recurrent_constraint), bias_constraint=getters.get_constraint(bias_constraint), dropout=dropout, recurrent_dropout=recurrent_dropout, **kwargs)
def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, **kwargs): super(SeparableConv2D, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, depth_multiplier=depth_multiplier, activation=getters.get_activation(activation), use_bias=use_bias, depthwise_initializer=getters.get_initializer( depthwise_initializer), pointwise_initializer=getters.get_initializer( pointwise_initializer), bias_initializer=getters.get_initializer(bias_initializer), depthwise_regularizer=getters.get_regularizer( depthwise_regularizer), pointwise_regularizer=getters.get_regularizer( pointwise_regularizer), bias_regularizer=getters.get_regularizer(bias_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), depthwise_constraint=getters.get_constraint(depthwise_constraint), pointwise_constraint=getters.get_constraint(pointwise_constraint), bias_constraint=getters.get_constraint(bias_constraint), **kwargs)
def __init__(self, input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None, **kwargs): super(Embedding, self).__init__( input_dim=input_dim, output_dim=output_dim, embeddings_initializer=getters.get_initializer( embeddings_initializer), embeddings_regularizer=getters.get_regularizer( embeddings_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), embeddings_constraint=getters.get_constraint( embeddings_constraint), mask_zero=mask_zero, input_length=input_length, **kwargs)