class MaxPooling2DSchema(BaseLayerSchema): pool_size = ObjectOrListObject(fields.Int, min=2, max=2, default=(2, 2), missing=(2, 2)) strides = ObjectOrListObject(fields.Int, min=2, max=2, default=None, missing=None) padding = fields.Str(default='valid', missing='valid', validate=validate.OneOf(['same', 'valid'])) data_format = fields.Str(default=None, missing=None, validate=validate.OneOf('channels_first', 'channels_last')) @staticmethod def schema_config(): return MaxPooling2DConfig
class GraphSchema(BaseSchema): input_layers = ObjectOrListObject(Tensor) output_layers = ObjectOrListObject(Tensor) layers = fields.Nested(LayerSchema, many=True) name = fields.Str(allow_none=True) class Meta: unknown = EXCLUDE @staticmethod def schema_config(): return GraphConfig
class ConvRecurrent2DSchema(RecurrentSchema): filters = fields.Int() kernel_size = ObjectOrListObject(fields.Int, min=2, max=2) strides = ObjectOrListObject(fields.Int, min=2, max=2, default=(1, 1), missing=(1, 1)) padding = fields.Str(default='valid', missing='valid', validate=validate.OneOf(['same', 'valid'])) data_format = fields.Str(allow_none=True, validate=validate.OneOf('channels_first', 'channels_last')) dilation_rate = ObjectOrListObject(fields.Int, min=2, max=2, default=(1, 1), missing=(1, 1)) return_sequences = fields.Bool(default=False, missing=False) go_backwards = fields.Bool(default=False, missing=False) stateful = fields.Bool(default=False, missing=False) @staticmethod def schema_config(): return ConvRecurrent2DConfig
class EpisodeLoggingTensorHookSchema(BaseSchema): tensors = ObjectOrListObject(fields.Str) every_n_episodes = fields.Int() @staticmethod def schema_config(): return EpisodeLoggingTensorHookConfig
class DotSchema(BaseLayerSchema): axes = ObjectOrListObject(fields.Int) normalize = fields.Bool(allow_none=True) @staticmethod def schema_config(): return DotConfig
class StepLoggingTensorHookSchema(BaseSchema): tensors = ObjectOrListObject(fields.Str) every_n_iter = fields.Int(allow_none=True) every_n_secs = fields.Int(allow_none=True) @staticmethod def schema_config(): return StepLoggingTensorHookConfig
class BaseLayerSchema(BaseSchema): name = fields.Str(allow_none=True) trainable = fields.Bool(default=True, missing=True) dtype = DType(allow_none=True) inbound_nodes = ObjectOrListObject(Tensor, allow_none=True) class Meta: unknown = EXCLUDE ordered = True def get_attribute(self, obj, attr, default): return get_value(attr, obj, default)
class LocallyConnected1DSchema(BaseLayerSchema): filters = fields.Int() kernel_size = ObjectOrListObject(fields.Int, min=1, max=1) strides = ObjectOrListObject(fields.Int, min=1, max=1, default=1, missing=1) padding = fields.Str(default='valid', missing='valid', validate=validate.OneOf(['same', 'valid'])) data_format = fields.Str(default=None, missing=None, validate=validate.OneOf('channels_first', 'channels_last')) activation = StrOrFct(allow_none=True, validate=validate.OneOf(ACTIVATION_VALUES)) use_bias = fields.Bool(default=True, missing=True) kernel_initializer = fields.Nested(InitializerSchema, default=None, missing=None) bias_initializer = fields.Nested(InitializerSchema, default=None, missing=None) kernel_regularizer = fields.Nested(RegularizerSchema, default=None, missing=None) bias_regularizer = fields.Nested(RegularizerSchema, default=None, missing=None) activity_regularizer = fields.Nested(RegularizerSchema, default=None, missing=None) kernel_constraint = fields.Nested(RegularizerSchema, default=None, missing=None) bias_constraint = fields.Nested(RegularizerSchema, default=None, missing=None) @staticmethod def schema_config(): return LocallyConnected1DConfig
class BaseModelSchema(BaseSchema): graph = fields.Nested(GraphSchema) loss = fields.Nested(LossSchema, allow_none=True) optimizer = fields.Nested(OptimizerSchema, allow_none=True) metrics = fields.Nested(MetricSchema, many=True, allow_none=True) summaries = ObjectOrListObject(fields.Str, allow_none=True) clip_gradients = fields.Float(allow_none=True) clip_embed_gradients = fields.Float(allow_none=True) name = fields.Str(allow_none=True) @staticmethod def schema_config(): return BaseModelConfig
class PReLUSchema(BaseLayerSchema): alpha_initializer = fields.Nested(InitializerSchema, default=None, missing=None) alpha_regularizer = fields.Nested(RegularizerSchema, default=None, missing=None) alpha_constraint = fields.Nested(ConstraintSchema, default=None, missing=None) shared_axes = ObjectOrListObject(fields.Int, default=None, missing=None) @staticmethod def schema_config(): return PReLUConfig
class RunSchema(BaseSchema): cmd = ObjectOrListObject(fields.Str) @staticmethod def schema_config(): return RunConfig
class FinalOpsHookSchema(BaseSchema): final_ops = ObjectOrListObject(fields.Str) @staticmethod def schema_config(): return FinalOpsHookConfig
class BaseBridgeSchema(BaseSchema): state_size = ObjectOrListObject(fields.Int, allow_none=True) name = fields.Str(allow_none=True)