예제 #1
0
 def test_parse_context_expression(self):
     parser = Parser()
     assert parser.parse_expression(ExperimentSpecification,
                                    '{{ something }}', {}) == ''
     assert parser.parse_expression(ExperimentSpecification,
                                    '{{ something }}',
                                    {'something': 1}) == 1
예제 #2
0
 def test_if_operator_config(self):
     config_dict = {
         'cond': '{{ i }} == 5',
         'do': 'It was True',
         'else_do': 'It was False'
     }
     config = IfConfig.from_dict(config_dict)
     assert config.to_dict() == config_dict
     assert 'It was True' == config.parse(ExperimentSpecification, Parser(),
                                          {'i': 5})
     assert 'It was False' == config.parse(ExperimentSpecification,
                                           Parser(), {'i': 3})
예제 #3
0
    def test_parse_base_expressions(self):
        data = [
            1, 10., [1, 1], (1, 1), 'string', ['str1', 'str2'], {
                1: 2,
                'a': 'a',
                'dict': {
                    1: 1
                }
            }
        ]

        parser = Parser()
        for d in data:
            assert d == parser.parse_expression(ExperimentSpecification, d, {})
예제 #4
0
 def _set_parsed_data(self):
     parsed_data = Parser.parse(self, self._data, None)
     if self.CONFIG:
         self._set_config(parsed_data)
     else:
         self._validated_data = validator.validate(spec=self,
                                                   data=parsed_data)
     self._parsed_data = parsed_data
예제 #5
0
 def get_experiment_spec(self, matrix_declaration):
     """Returns an experiment spec for this group spec and the given matrix declaration."""
     parsed_data = Parser.parse(self, self._data, matrix_declaration)
     del parsed_data[self.HP_TUNING]
     validator.validate(spec=self, data=parsed_data)
     return ExperimentSpecification(
         values=[parsed_data, {
             'kind': self._EXPERIMENT
         }])
예제 #6
0
    def test_parse_graph_with_many_inputs_and_non_used_raises(self):
        expression = {
            'graph': {
                'input_layers': ['images', 'sounds'],
                'layers': [
                    {
                        'Conv2D': {
                            'filters': 64,
                            'kernel_size': [3, 3],
                            'strides': [1, 1],
                            'activation': 'relu',
                            'name': 'Conv2D_1',
                            'inbound_nodes': ['images']
                        }
                    },
                    {
                        'MaxPooling2D': {
                            'kernels': 2
                        }
                    },  # This layer is orphan
                    {
                        'Flatten': {
                            'inbound_nodes': ['Conv2D_1']
                        }
                    },  # Specify the input layer
                    {
                        'Dense': {
                            'units': 10,
                            'activation': 'softmax',
                        }
                    }
                ]
            }
        }

        parser = Parser()
        with self.assertRaises(PolyaxonfileError):
            parser.parse_expression(ExperimentSpecification,
                                    expression, {},
                                    check_graph=True)
예제 #7
0
    def __init__(self, values):
        self._values = to_list(values)

        try:
            self._data = rhea.read(self._values)
        except rhea.RheaError as e:
            raise PolyaxonConfigurationError(e)
        self.check_data()
        headers = Parser.get_headers(spec=self, data=self._data)
        try:
            self._headers = validator.validate_headers(spec=self, data=headers)
        except ValidationError as e:
            raise PolyaxonConfigurationError(e)
        self._parsed_data = None
        self._validated_data = None
        self._config = None
        self._set_parsed_data()
        self._extra_validation()
예제 #8
0
    def test_parse_graph_expression(self):
        expression = {
            'graph': {
                'input_layers': ['images'],
                'layers': [{
                    'Conv2D': {
                        'filters': 64,
                        'kernel_size': [3, 3],
                        'strides': [1, 1],
                        'activation': 'relu',
                    }
                }, {
                    'MaxPooling2D': {
                        'kernels': 2
                    }
                }, {
                    'Flatten': None
                }, {
                    'Dense': {
                        'units': 10,
                        'activation': 'softmax',
                    }
                }]
            }
        }

        parser = Parser()
        assert parser.parse_expression(ExperimentSpecification, expression,
                                       {}) == expression

        expected_expression = {
            'graph': {
                'input_layers': ['images'],
                'layers': [{
                    'Conv2D': {
                        'activation': 'relu',
                        'filters': 64,
                        'kernel_size': [3, 3],
                        'name': 'Conv2D_1',
                        'strides': [1, 1],
                        'inbound_nodes': ['images']
                    }
                }, {
                    'MaxPooling2D': {
                        'inbound_nodes': ['Conv2D_1'],
                        'kernels': 2,
                        'name': 'MaxPooling2D_1'
                    }
                }, {
                    'Flatten': {
                        'inbound_nodes': ['MaxPooling2D_1'],
                        'name': 'Flatten_1'
                    }
                }, {
                    'Dense': {
                        'activation': 'softmax',
                        'inbound_nodes': ['Flatten_1'],
                        'name': 'Dense_1',
                        'units': 10
                    }
                }],
                'output_layers': ['Dense_1']
            }
        }
        assert parser.parse_expression(ExperimentSpecification,
                                       expression, {},
                                       check_graph=True) == expected_expression
예제 #9
0
    def test_parse_graph_with_operators_and_tags(self):
        declarations = {
            'conv2d': {
                'filters': [32, 64],
                'kernel_size': [[3, 3], [2, 2]],
                'strides': [1, 1],
                'activation': ['relu', 'linear']
            }
        }
        expression = {
            'graph': {
                'input_layers': ['images'],
                'layers': [{
                    'for': {
                        'len': 2,
                        'index': 'i',
                        'do': {
                            'Conv2D': {
                                'filters': '{{ conv2d.filters[i] }}',
                                'kernel_size': '{{ conv2d.kernel_size[i] }}',
                                'strides': '{{ conv2d.strides }}',
                                'activation': '{{ conv2d.activation[i] }}',
                                'tags': ['tag1', 'tag2']
                            }
                        }
                    }
                }, {
                    'MaxPooling2D': {
                        'kernels': 2
                    }
                }, {
                    'Flatten': {
                        'name': 'Flatten_1'
                    }
                }, {
                    'Flatten': {
                        'inbound_nodes': ['{{ tags.tag1[0] }}'],
                        'name': 'Flatten_2'
                    }
                }, {
                    'Concat': {
                        'inbound_nodes': ['Flatten_1', 'Flatten_2']
                    }
                }, {
                    'Dense': {
                        'units': 10,
                        'activation': 'softmax',
                    }
                }]
            }
        }

        parser = Parser()
        result_expression = parser.parse_expression(ExperimentSpecification,
                                                    expression,
                                                    declarations,
                                                    check_operators=True,
                                                    check_graph=True)
        expected_result = {
            'graph': {
                'input_layers': ['images'],
                'layers': [{
                    'Conv2D': {
                        'activation': 'relu',
                        'filters': 32,
                        'kernel_size': [3, 3],
                        'name': 'Conv2D_1',
                        'strides': [1, 1],
                        'inbound_nodes': ['images'],
                        'tags': ['tag1', 'tag2']
                    }
                }, {
                    'Conv2D': {
                        'activation': 'linear',
                        'filters': 64,
                        'inbound_nodes': ['Conv2D_1'],
                        'kernel_size': [2, 2],
                        'name': 'Conv2D_2',
                        'strides': [1, 1],
                        'tags': ['tag1', 'tag2']
                    }
                }, {
                    'MaxPooling2D': {
                        'inbound_nodes': ['Conv2D_2'],
                        'kernels': 2,
                        'name': 'MaxPooling2D_1'
                    }
                }, {
                    'Flatten': {
                        'inbound_nodes': ['MaxPooling2D_1'],
                        'name': 'Flatten_1'
                    }
                }, {
                    'Flatten': {
                        'inbound_nodes': ['Conv2D_1'],
                        'name': 'Flatten_2'
                    }
                }, {
                    'Concat': {
                        'inbound_nodes': ['Flatten_1', 'Flatten_2'],
                        'name': 'Concat_1'
                    }
                }, {
                    'Dense': {
                        'activation': 'softmax',
                        'inbound_nodes': ['Concat_1'],
                        'name': 'Dense_1',
                        'units': 10
                    }
                }],
                'output_layers': ['Dense_1']
            }
        }
        assert result_expression == expected_result
예제 #10
0
    def test_for_operator_config(self):
        config_dict = {'len': 5, 'do': 'Value at {{ i }}', 'index': 'i'}
        config = ForConfig.from_dict(config_dict)
        assert config.to_dict() == config_dict

        expected = [
            'Value at 0', 'Value at 1', 'Value at 2', 'Value at 3',
            'Value at 4'
        ]
        assert expected == config.parse(ExperimentSpecification, Parser(), {})

        config_dict = {
            'len':
            5,
            'do': [{
                'Conv2D': {
                    'strides': ['{{ i }}', '{{ i }}']
                }
            }, {
                'Pooling2D': {
                    'strides': ['{{ i }}', '{{ i }}']
                }
            }],
            'index':
            'i'
        }
        config = ForConfig.from_dict(config_dict)
        assert config.to_dict() == config_dict

        # Lists get flattened
        expected = [{
            'Conv2D': {
                'strides': [0, 0]
            }
        }, {
            'Pooling2D': {
                'strides': [0, 0]
            }
        }, {
            'Conv2D': {
                'strides': [1, 1]
            }
        }, {
            'Pooling2D': {
                'strides': [1, 1]
            }
        }, {
            'Conv2D': {
                'strides': [2, 2]
            }
        }, {
            'Pooling2D': {
                'strides': [2, 2]
            }
        }, {
            'Conv2D': {
                'strides': [3, 3]
            }
        }, {
            'Pooling2D': {
                'strides': [3, 3]
            }
        }, {
            'Conv2D': {
                'strides': [4, 4]
            }
        }, {
            'Pooling2D': {
                'strides': [4, 4]
            }
        }]
        assert expected == config.parse(ExperimentSpecification, Parser(), {})
예제 #11
0
 def environment(self):
     # This is a hack, in the future we need to gather the paths of the experiments
     parsed_data = Parser.parse(self, self._data,
                                self.matrix_declaration_test)
     return parsed_data.get(self.ENVIRONMENT, None)
예제 #12
0
 def _set_parsed_data(self):
     # We need to validate that the data is correct
     # For that we just use a matrix declaration test
     parsed_data = Parser.parse(self, self._data,
                                self.matrix_declaration_test)
     validator.validate(spec=self, data=parsed_data)
예제 #13
0
 def get_experiment_spec(self, matrix_declaration):
     """Returns an experiment spec for this group spec and the given matrix declaration."""
     params = self._config_data.get_params(context=matrix_declaration)
     parsed_data = Parser.parse(self, self._config_data, params, matrix_declaration)
     del parsed_data[self.HP_TUNING]
     return ExperimentSpecification(values=[parsed_data, {'kind': kinds.EXPERIMENT}])
예제 #14
0
 def apply_context(self, context=None):
     params = self._config_data.get_params(context=context)
     parsed_data = Parser.parse(self, self._config_data, params, self.matrix_declaration_test)
     validator.validate(spec=self, data=parsed_data)
     self._config = self._config_data
     return parsed_data