'If specified, the script will not terminate if some SNPs are not found in the meta file' ) parser.add_argument( '--q', type=int, default=100, help= 'The maximum ratio between the largest and smallest prior causal probabilities' ) args = parser.parse_args() #check package versions check_package_versions() #configure logger configure_logger(args.out) #read sumtats file logging.info('Loading sumstats files...') t0 = time.time() try: df_snps = pd.read_parquet(args.sumstats) except (ArrowIOError, ArrowInvalid): df_snps = pd.read_table(args.sumstats, sep='\s+') if 'A1' not in df_snps.columns: raise ValueError('missing column A1') if 'A2' not in df_snps.columns: raise ValueError('missing column A2') if 'CHR' not in df_snps.columns: raise ValueError('missing column CHR') if 'BP' not in df_snps.columns:
'If specified, S-LDSC will estimate non-negative taus using an exact instead of an approximate solver (this will be slower but slightly more accurate)' ) #check package versions check_package_versions() #show splash screen splash_screen() #extract args args = parser.parse_args() #check that the output directory exists if len(os.path.dirname(args.output_prefix)) > 0 and not os.path.exists( os.path.dirname(args.output_prefix)): raise ValueError('output directory %s doesn\'t exist' % (os.path.dirname(args.output_prefix))) #configure logger configure_logger(args.output_prefix) #check and fix args args = check_args(args) check_files(args) #create and run PolyFun object polyfun_obj = PolyFun() polyfun_obj.polyfun_main(args) print()