예제 #1
0
def least_squares_test_III( f ):
    eps = 2e-12
    # define build points and values
    num_dims = 2
    num_pts_1d = 6
    domain = TensorProductDomain( num_dims, [[-1.,1.]] )
    x = -numpy.cos( numpy.linspace( 0., 1., num_pts_1d ) * numpy.pi );
    [X,Y] = numpy.meshgrid( x, x )
    build_points = numpy.vstack( ( X.reshape(( 1,X.shape[0]*X.shape[1])), 
                                   Y.reshape(( 1, Y.shape[0]*Y.shape[1]))))
    #build_points = numpy.random.uniform( -1, 1, ( num_dims, 20 ) )
    build_values = f( build_points )

    # define solver
    lamda = 0.
    order = num_pts_1d - 1
    poly_1d = [ LegendrePolynomial1D() ]
    basis = TensorProductBasis( num_dims, poly_1d )
    pce = PCE( num_dims, order = order, basis = basis, func_domain = domain )
    V = pce.vandermonde( build_points ).T
    linear_solver = LeastSquaresSolver( lamda = lamda )

    coeff, tmp = linear_solver.solve( V, build_values )
    coeff = coeff[:,0]
    residuals  = build_values - numpy.dot( V, coeff )

    # Initialise variables for the leave k out cross validation error
    VtV_inv = numpy.linalg.inv( numpy.dot( V.T, V ) + 
                                lamda * numpy.eye( V.shape[1] ) )

    # perform cross validation on vandermonde matrix
    num_folds = build_points.shape[1]
    cv_iterator = KFoldCrossValidationIterator( num_folds, 
                                                build_points.shape[1],
                                                seed = 1)
    for train_indices, validation_indices in cv_iterator:
        output = linear_solver.compute_residuals(  V[train_indices], 
                                            build_values[train_indices], 
                                            V[validation_indices], 
                                            build_values[validation_indices] )
        validation_residuals = output[2]

        V_k = V[validation_indices] 
        H = numpy.eye( V_k.shape[0] ) - numpy.dot( V_k, numpy.dot( VtV_inv, 
                                                                   V_k.T ) )
        assert numpy.linalg.cond( H ) <=  1. / numpy.finfo( numpy.double ).eps

        H_inv = numpy.linalg.inv( H )

        assert numpy.linalg.norm( numpy.dot( H_inv, 
                                             residuals[validation_indices] ) -
                            validation_residuals.reshape( V_k.shape[0] ) ) < eps
예제 #2
0
     def test_omp_choloesky( self ):

          f_1d = lambda x: x**10

          num_dims = 1
          order = 20
          func_domain = TensorProductDomain( num_dims, [[-1,1]] )          
          build_pts = numpy.linspace(-.85,.9,14)
          build_pts = numpy.atleast_2d( build_pts )
          build_vals = f_1d( build_pts ).T
          poly_1d = [ LegendrePolynomial1D() ]
          basis = TensorProductBasis( num_dims, poly_1d )
          pce = PCE( num_dims, basis, order, func_domain )


          all_train_indices = []
          all_validation_indices = []
          cv_iterator = LeaveOneOutCrossValidationIterator( build_pts.shape[1] )
          for train_indices, validation_indices in cv_iterator:
               all_train_indices.append( train_indices )
               all_validation_indices.append( validation_indices )

          vandermonde = pce.vandermonde( build_pts ).T
          out = orthogonal_matching_pursuit_cholesky( vandermonde, 
                                                      build_vals.squeeze(), 
                                                      all_train_indices,
                                                      all_validation_indices, 
                                                      0.0, 1000, 0 )

          num_steps = out[1].shape[1]
          # use num_steps -1 bscause leave one out cross validation is
          # invalid when V is underdterimed which happens when i = num_steps.
          for i in xrange( num_steps-1 ):
               I = numpy.asarray( out[1][1,:i+1], dtype = numpy.int32 )
               V = vandermonde[:,I]
               for j in xrange( len( all_validation_indices ) ):
                    J = all_train_indices[j]
                    K = all_validation_indices[j]
                    A =  V[J,:]
                    b = build_vals[J,:]
                    x = ridge_regression( A, b )
                    assert numpy.allclose( ( build_vals[K,0] - 
                                             numpy.dot( V, x )[K,0 ]), 
                                           out[2][i][j] )

          all_train_indices = []
          all_validation_indices = []
          num_folds = 5
          cv_iterator = KFoldCrossValidationIterator( num_folds,
                                                      build_pts.shape[1] )
          for train_indices, validation_indices in cv_iterator:
               all_train_indices.append( train_indices )
               all_validation_indices.append( validation_indices )

          vandermonde = pce.vandermonde( build_pts ).T
          out = orthogonal_matching_pursuit_cholesky( vandermonde, 
                                                      build_vals.squeeze(), 
                                                      all_train_indices,
                                                      all_validation_indices, 
                                                      0.0, 1000, 0 )

          num_steps = out[1].shape[1]
          for i in xrange( num_steps-1 ):
               I = numpy.asarray( out[1][1,:i+1], dtype = numpy.int32 )
               V = vandermonde[:,I]
               for j in xrange( len( all_validation_indices ) ):
                    J = all_train_indices[j]
                    K = all_validation_indices[j]
                    A =  V[J,:]
                    b = build_vals[J,:]
                    x = ridge_regression( A, b )
                    if ( len( I ) <= len( J ) ):
                         assert numpy.allclose( ( build_vals[K,0] - 
                                                  numpy.dot( V, x )[K,0] ),
                                                out[2][i][j] )
예제 #3
0
     def xtest_grid_search_cross_validation( self ):

          f_1d = lambda x: x**10

          build_pts = numpy.linspace(-.85,.9,14)
          build_pts = numpy.atleast_2d( build_pts )
          build_vals = f_1d( build_pts ).T

          # Test grid search cross validation when applied to Gaussian Process
          num_dims = 1
          func_domain = TensorProductDomain( num_dims, [[-1,1]] )
          GP = GaussianProcess()
          GP.set_verbosity( 0 )
          GP.function_domain( func_domain )

          loo_cv_iterator = LeaveOneOutCrossValidationIterator()
          CV = GridSearchCrossValidation( loo_cv_iterator, GP )
          CV.run( build_pts, build_vals )         
          
          I = numpy.arange( build_pts.shape[1] )
          for i in xrange( build_pts.shape[1] ):
               if i == 0 : J = I[1:]
               elif i == build_pts.shape[1]-1 : J = I[:-1]
               else: J = numpy.hstack( ( I[:i], I[i+1:] ) )
               train_pts = build_pts[:,J]
               train_vals = build_vals[J,:]
               GP.build( train_pts, train_vals )
               pred_vals = GP.evaluate_set( build_pts )
               assert numpy.allclose( build_vals[i,0]-pred_vals[i],
                                      CV.residuals[0][i] )

          # Test grid search cross validation when applied to polynomial chaos
          # expansions that are built using ridge regression
          # The vandermonde matrix is built from scratch every time by the pce
          num_dims = 1
          order = 3
          build_vals = f_1d( build_pts ).T
          poly_1d = [ LegendrePolynomial1D() ]
          basis = TensorProductBasis( num_dims, poly_1d )
          pce = PCE( num_dims, basis, order, func_domain )

          loo_cv_iterator = LeaveOneOutCrossValidationIterator()
          CV = GridSearchCrossValidation( loo_cv_iterator, pce )
          CV.run( build_pts, build_vals )

          I = numpy.arange( build_pts.shape[1] )
          V = pce.vandermonde( build_pts ).T
          for i in xrange( V.shape[0] ):
               if i == 0 : J = I[1:]
               elif i == build_pts.shape[1]-1 : J = I[:-1]
               else: J = numpy.hstack( ( I[:i], I[i+1:] ) )
               A =  V[J,:]
               b = build_vals[J,:]
               x = ridge_regression( A, b )
               assert numpy.allclose( (build_vals[i,0]-numpy.dot( V, x ))[i],
                                      CV.residuals[0][i] )

          # Test grid search cross validation when applied to polynomial chaos
          # expansions that are built using ridge regression
          # Specifying  parse_cross_validation_data = True will ensure that 
          # the vandermonde matrix is not built from scratch every time by 
          # the pce
          num_dims = 1
          order = 3
          build_vals = f_1d( build_pts ).T
          poly_1d = [ LegendrePolynomial1D() ]
          basis = TensorProductBasis( num_dims, poly_1d )
          pce = PCE( num_dims, basis, order, func_domain )

          loo_cv_iterator = LeaveOneOutCrossValidationIterator()
          CV = GridSearchCrossValidation( loo_cv_iterator, pce, 
                                          use_predictor_cross_validation = True)
          CV.run( build_pts, build_vals )

          I = numpy.arange( build_pts.shape[1] )
          V = pce.vandermonde( build_pts ).T
          for i in xrange( V.shape[0] ):
               if i == 0 : J = I[1:]
               elif i == build_pts.shape[1]-1 : J = I[:-1]
               else: J = numpy.hstack( ( I[:i], I[i+1:] ) )
               A =  V[J,:]
               b = build_vals[J,:]
               x = ridge_regression( A, b )
               assert numpy.allclose( (build_vals[i,0]-numpy.dot( V, x ))[i],
                                      CV.residuals[0][i] )

          # Test grid search cross validation when applied to polynomial chaos
          # expansions that are built using ridge regression
          # A closed form for the cross validation residual is used
          num_dims = 1
          order = 3
          build_vals = f_1d( build_pts ).T
          poly_1d = [ LegendrePolynomial1D() ]
          basis = TensorProductBasis( num_dims, poly_1d )
          pce = PCE( num_dims, basis, order, func_domain )

          loo_cv_iterator = LeaveOneOutCrossValidationIterator()
          CV = GridSearchCrossValidation( loo_cv_iterator, pce, 
                                     use_predictor_cross_validation = True,
                                     use_fast_predictor_cross_validation = True )
          CV.run( build_pts, build_vals )

          I = numpy.arange( build_pts.shape[1] )
          V = pce.vandermonde( build_pts ).T
          for i in xrange( V.shape[0] ):
               if i == 0 : J = I[1:]
               elif i == build_pts.shape[1]-1 : J = I[:-1]
               else: J = numpy.hstack( ( I[:i], I[i+1:] ) )
               A =  V[J,:]
               b = build_vals[J,:]
               x = ridge_regression( A, b )
               assert numpy.allclose( (build_vals[i,0]-numpy.dot( V, x ))[i],
                                      CV.residuals[0][i] )

          # Test grid search cross validation when applied to polynomial chaos
          # expansions that are built using ridge regression
          num_dims = 1
          order = 3
          build_vals = f_1d( build_pts ).T
          poly_1d = [ LegendrePolynomial1D() ]
          basis = TensorProductBasis( num_dims, poly_1d )
          pce = PCE( num_dims, basis, order, func_domain )

          max_order = build_pts.shape[1]
          orders = numpy.arange( 1, max_order )
          lamda = numpy.array( [0.,1e-3,1e-2,1e-1] )
          # note cartesian product takes type from first array in 1d sets
          # so if I use orders first lamda will be rounded to 0
          cv_params_grid_array = cartesian_product( [lamda,orders] )

          cv_params_grid = []
          for i in xrange( cv_params_grid_array.shape[0] ):
               cv_params = {}
               cv_params['lambda'] = cv_params_grid_array[i,0]
               cv_params['order'] = numpy.int32( cv_params_grid_array[i,1] )
               cv_params_grid.append( cv_params )

          loo_cv_iterator = LeaveOneOutCrossValidationIterator()
          CV = GridSearchCrossValidation( loo_cv_iterator, pce, 
                                    use_predictor_cross_validation = True,
                                    use_fast_predictor_cross_validation = False )
          CV.run( build_pts, build_vals, cv_params_grid )

          k = 0
          I = numpy.arange( build_pts.shape[1] )
          for cv_params in cv_params_grid:
               order = cv_params['order']
               lamda = cv_params['lambda']
               pce.set_order( order )
               V = pce.vandermonde( build_pts ).T
               for i in xrange( V.shape[0] ):
                    if i == 0 : J = I[1:]
                    elif i == build_pts.shape[1]-1 : J = I[:-1]
                    else: J = numpy.hstack( ( I[:i], I[i+1:] ) )
                    A =  V[J,:]
                    b = build_vals[J,:]
                    x = ridge_regression( A, b, lamda = lamda )
                    assert numpy.allclose( ( build_vals[i,0]-
                                             numpy.dot( V, x ) )[i],
                                           CV.residuals[k][i] )
               k += 1

          print 'best',CV.best_cv_params

          # Test grid search cross validation when applied to 
          # expansions that are built using a step based method
          # ( LARS )
          num_dims = 1
          order = 3
          build_vals = f_1d( build_pts ).T
          poly_1d = [ LegendrePolynomial1D() ]
          basis = TensorProductBasis( num_dims, poly_1d )
          pce = PCE( num_dims, basis, order, func_domain )

          max_order = build_pts.shape[1]
          orders = numpy.arange( 1, max_order )
          lamda = numpy.array( [0.,1e-3,1e-2,1e-1] )
          # note cartesian product takes type from first array in 1d sets
          # so if I use orders first lamda will be rounded to 0
          cv_params_grid_array = cartesian_product( [lamda,orders] )

          cv_params_grid = []
          for i in xrange( cv_params_grid_array.shape[0] ):
               cv_params = {}
               cv_params['solver'] = 4 # LARS
               cv_params['order'] = numpy.int32( cv_params_grid_array[i,1] )
               cv_params_grid.append( cv_params )

          print cv_params_grid

          loo_cv_iterator = LeaveOneOutCrossValidationIterator()
          #loo_cv_iterator = KFoldCrossValidationIterator( 3 )
          CV = GridSearchCrossValidation( loo_cv_iterator, pce, 
                                    use_predictor_cross_validation = True,
                                    use_fast_predictor_cross_validation = False )
          CV.run( build_pts, build_vals, cv_params_grid )

          k = 0
          I = numpy.arange( build_pts.shape[1] )
          for cv_params in cv_params_grid:
               order = cv_params['order']
               pce.set_order( order )
               V = pce.vandermonde( build_pts ).T
               for i in xrange( V.shape[0] ):
                    if i == 0 : J = I[1:]
                    elif i == build_pts.shape[1]-1 : J = I[:-1]
                    else: J = numpy.hstack( ( I[:i], I[i+1:] ) )
                    A =  V[J,:]
                    b = build_vals[J,:]
                    b = b.reshape( b.shape[0] )
                    x, metrics = least_angle_regression( A, b, 0., 4, 0., 1000, 
                                                         0 )
                    assert numpy.allclose( ( build_vals[i,0]-
                                             numpy.dot( V, x ) )[i],
                                           CV.residuals[k][i] )
               k += 1

          #for i in xrange( len( CV.cv_params_set ) ):
          #     print CV.cv_params_set[i], CV.scores[i]

          print 'best param', CV.best_cv_params
          print 'best score', CV.best_score
          print build_pts.shape[1]

          # ( OMP )
          num_dims = 1
          order = 3
          build_vals = f_1d( build_pts ).T
          poly_1d = [ LegendrePolynomial1D() ]
          basis = TensorProductBasis( num_dims, poly_1d )
          pce = PCE( num_dims, basis, order, func_domain )

          max_order = build_pts.shape[1]
          orders = numpy.arange( 1, max_order )
          lamda = numpy.array( [0.,1e-3,1e-2,1e-1] )
          # note cartesian product takes type from first array in 1d sets
          # so if I use orders first lamda will be rounded to 0
          cv_params_grid_array = cartesian_product( [lamda,orders] )

          cv_params_grid = []
          for i in xrange( cv_params_grid_array.shape[0] ):
               cv_params = {}
               cv_params['solver'] = 2 # OMP
               cv_params['order'] = numpy.int32( cv_params_grid_array[i,1] )
               cv_params_grid.append( cv_params )

          print cv_params_grid

          loo_cv_iterator = LeaveOneOutCrossValidationIterator()
          #loo_cv_iterator = KFoldCrossValidationIterator( 3 )
          CV = GridSearchCrossValidation( loo_cv_iterator, pce, 
                                    use_predictor_cross_validation = True,
                                    use_fast_predictor_cross_validation = False )
          CV.run( build_pts, build_vals, cv_params_grid )

          k = 0
          I = numpy.arange( build_pts.shape[1] )
          for cv_params in cv_params_grid:
               order = cv_params['order']
               pce.set_order( order )
               V = pce.vandermonde( build_pts ).T
               for i in xrange( V.shape[0] ):
                    if i == 0 : J = I[1:]
                    elif i == build_pts.shape[1]-1 : J = I[:-1]
                    else: J = numpy.hstack( ( I[:i], I[i+1:] ) )
                    A =  V[J,:]
                    b = build_vals[J,:]
                    b = b.reshape( b.shape[0] )
                    x, metrics = orthogonal_matching_pursuit( A, b, 0., 1000, 0 )
                    assert numpy.allclose( ( build_vals[i,0]-
                                             numpy.dot( V, x ) )[i],
                                           CV.residuals[k][i] )
               k += 1

          #for i in xrange( len( CV.cv_params_set ) ):
          #     print CV.cv_params_set[i], CV.scores[i]

          print 'best param', CV.best_cv_params
          print 'best score', CV.best_score
          print build_pts.shape[1]
예제 #4
0
def pce_study( build_pts, build_vals, domain, 
               test_pts, test_vals, 
               results_file = None,
               cv_file = None, solver_type = 2 ):

    num_dims = build_pts.shape[0]

    index_generator = IndexGenerator()

    poly_1d = [ LegendrePolynomial1D() ]
    basis = TensorProductBasis( num_dims, poly_1d )
    pce = PCE( num_dims, order = 0, basis = basis, func_domain = domain )

    if ( solver_type == 1 ):
        num_folds = build_pts.shape[1]
    else:
        num_folds = 20

    index_norm_orders = numpy.linspace( 0.4, 1.0, 4 )    
    #if (solver_tupe == 1):
    #    index_norm_orders = [.4,.5,.6,.7,.8,.9,1.]

    #solvers = numpy.array( [solver_type], numpy.int32 )
    #cv_params_grid_array = cartesian_product( [solvers,orders] )
    cv_params_grid = []
    for index_norm_order in index_norm_orders:
        level = 2
        # determine what range of orders to consider. 
        # spefically consider any order that results in a pce with terms <= 3003
        while ( True ):
            #index_generator.set_parameters( num_dims, level, 
            #                                index_norm_order = index_norm_order)
            indices = index_generator.get_isotropic_indices( num_dims, level, 
                                                             index_norm_order )
            num_indices = len( indices )
            print level, index_norm_order, len ( indices )
            if ( num_indices > 3003 ):
                break
            
            cv_params = {}
            cv_params['solver'] = solver_type
            cv_params['order'] = level
            cv_params['index_norm_order'] = index_norm_order

            if ( cv_params['solver'] > 1 or 
                 num_indices <= build_pts.shape[1] ):
                # only do least squares on over-determined systems
                cv_params_grid.append( cv_params  )

            level += 1

    print cv_params_grid

    # cv_iterator = LeaveOneOutCrossValidationIterator()    
    cv_iterator = KFoldCrossValidationIterator( num_folds = num_folds )
    CV = GridSearchCrossValidation( cv_iterator, pce,
                                    use_predictor_cross_validation = True,
                                    use_fast_predictor_cross_validation = True )
    t0 = time.time()
    CV.run( build_pts, build_vals, cv_params_grid )
    time_taken = time.time() - t0
    print 'cross validation took ', time_taken, ' seconds'
    
    print "################"
    print "Best cv params: ", CV.best_cv_params
    print "Best cv score: ", CV.best_score
    print "################"

    #for i in xrange( len( CV.cv_params_set ) ):
    #    print CV.cv_params_set[i], CV.scores[i]

    best_order = CV.best_cv_params['order']
    best_index_norm_order = CV.best_cv_params['index_norm_order']

    best_pce = PCE( num_dims, 
                    order = best_order, 
                    basis = basis, 
                    func_domain = domain,
                    index_norm_order = best_index_norm_order)
    V = best_pce.vandermonde( build_pts ).T
    best_pce.set_solver( CV.best_cv_params['solver'] )
    if  cv_params['solver'] != 1 and cv_params['solver'] != 5:
        best_res_tol = CV.best_cv_params['norm_residual']
        best_pce.linear_solver.residual_tolerance = best_res_tol
        
    sols, sol_metrics = best_pce.linear_solver.solve( V, build_vals )
    coeff = sols[:,-1]

    best_pce.set_coefficients( coeff )
    error = abs( build_vals - best_pce.evaluate_set( build_pts ) )
    print max( error )

    print 'Evaluating best pce at test points'
    num_test_pts = test_pts.shape[1]
    pce_vals_pred = best_pce.evaluate_set( test_pts ).T
    print test_vals.shape, pce_vals_pred.shape
    error = test_vals.squeeze() - pce_vals_pred
    linf_error = numpy.max( numpy.absolute( error ) )
    l2_error = numpy.sqrt( numpy.dot( error.T, error ) / num_test_pts )
    mean = numpy.mean( pce_vals_pred )
    var =  numpy.var( pce_vals_pred )
    pce_mean = best_pce.mean()
    pce_var = best_pce.variance()

    if results_file is not None:
        results_file.write( '%1.15e' %linf_error + ',' +  '%1.15e' %l2_error + 
                            ',' +  '%1.15e' %mean + ',' +  '%1.15e' %var + 
                            ',%1.15e' %pce_mean + ',' + '%1.15e' %pce_var + '\n')

    print "linf error: ", linf_error
    print "l2 error: ", l2_error
    print "mean: ", mean 
    print "var: ", var
    print "pce mean: ", pce_mean 
    print "pce var: ", pce_var
예제 #5
0
    def cv_vs_error_study( build_pts, build_vals, domain, 
               test_pts, test_vals, 
               results_file = None,
               cv_file = None, solver_type = 2 ):
        num_dims = build_pts.shape[0]
        if ( num_dims == 10 ):
            max_order = 5
        elif ( num_dims == 15 ):
            max_order = 4
        else: 
            max_order = 3

        poly_1d = [ LegendrePolynomial1D() ]
        basis = TensorProductBasis( num_dims, poly_1d )
        pce = PCE( num_dims, order = 0, basis = basis, func_domain = domain )

        orders = numpy.arange( 1, max_order + 1 )
        solvers = numpy.array( [solver_type], numpy.int32 )
        cv_params_grid_array = cartesian_product( [solvers,orders] )
        cv_params_grid = []
        for i in xrange( cv_params_grid_array.shape[0] ):
            cv_params = {}
            cv_params['solver'] = numpy.int32( cv_params_grid_array[i,0] )
            cv_params['order'] = numpy.int32( cv_params_grid_array[i,1] )
            num_pce_terms = polynomial_space_dimension( num_dims,
                                                        cv_params['order'] )
            if ( cv_params['solver'] <= 1 and 
                 num_pce_terms >= build_pts.shape[1] ):
                cv_params['lambda'] = 1.e-12
            cv_params_grid.append( cv_params )

        # print cv_params_grid

        # cv_iterator = LeaveOneOutCrossValidationIterator()    
        cv_iterator = KFoldCrossValidationIterator( num_folds = 20 )
        CV = GridSearchCrossValidation( cv_iterator, pce,
                                        use_predictor_cross_validation = True,
                                        use_fast_predictor_cross_validation = True )
        t0 = time.time()
        CV.run( build_pts, build_vals, cv_params_grid )
        time_taken = time.time() - t0
        print 'cross validation took ', time_taken, ' seconds'

        print "################"
        print "Best cv params: ", CV.best_cv_params
        print "Best cv score: ", CV.best_score
        print "################"

        for order in orders:
            residual_norms = numpy.empty( len( CV.cv_params_set ), numpy.double )
            scores = numpy.empty( len( CV.cv_params_set ), numpy.double )
            k = 0
            for i in xrange( len( CV.cv_params_set ) ):
                if ( CV.cv_params_set[i]['order'] == order ):
                    residual_norms[k] = CV.cv_params_set[i]['norm_residual']
                    scores[k] = CV.scores[i]
                    k += 1

            residual_norms.resize( k )
            scores.resize( k )

            pce = PCE( num_dims, 
                       order = order, 
                       basis = basis, 
                       func_domain = domain )
            V = pce.vandermonde( build_pts ).T
            pce.set_solver( CV.best_cv_params['solver'] )
            # pce.linear_solver.max_iterations = 3
            sols, sol_metrics = pce.linear_solver.solve( V, build_vals )
            from sklearn.linear_model import orthogonal_mp
            l2_error = numpy.empty( ( sols.shape[1] ), numpy.double )
            residuals = numpy.empty( ( sols.shape[1] ), numpy.double )
            test_pts = numpy.random.uniform( 0., 1., ( num_dims, 1000 ) )
            f = GenzModel( domain, 'oscillatory' )
            # f.set_coefficients( 4.5, 'no-decay' )
            f.set_coefficients( 4.5, 'quadratic-decay' )
            test_vals = f( test_pts ).reshape( ( test_pts.shape[1], 1 ) )
            for i in xrange( sols.shape[1] ):
                coeff = sols[:,i]
                pce.set_coefficients( coeff )
                residuals[i] = numpy.linalg.norm( build_vals - 
                                                  pce.evaluate_set( build_pts ) )
                num_test_pts = test_pts.shape[1]
                pce_vals_pred = pce.evaluate_set( test_pts ).T
                error = test_vals.squeeze() - pce_vals_pred
                l2_error[i] = numpy.linalg.norm( error ) / numpy.sqrt( num_test_pts )

            import pylab
            print residuals, l2_error
            print residual_norms, scores
            pylab.loglog( residuals, l2_error, label  = str( order ) + 'true' )
            pylab.loglog( residual_norms, scores, label = str( order )+'-cv' )
        pylab.xlim([1e-3,10])
        pylab.legend()
        pylab.show()
예제 #6
0
def pce_study( build_pts, build_vals, domain, 
               test_pts, test_vals, 
               results_file = None,
               cv_file = None, solver_type = 2 ):

    num_dims = build_pts.shape[0]

    index_generator = IndexGenerator()

    poly_1d = [ LegendrePolynomial1D() ]
    basis = TensorProductBasis( num_dims, poly_1d )
    pce = PCE( num_dims, order = 0, basis = basis, func_domain = domain )

    if ( solver_type == 1 ):
        num_folds = build_pts.shape[1]
    else:
        num_folds = 20

    index_norm_orders = numpy.linspace( 0.4, 1.0, 4 )
    #solvers = numpy.array( [solver_type], numpy.int32 )
    #cv_params_grid_array = cartesian_product( [solvers,orders] )
    cv_params_grid = []
    for index_norm_order in index_norm_orders:
        level = 2
        # determine what range of orders to consider. 
        # spefically consider any order that results in a pce with terms <= 3003
        while ( True ):
            index_generator.set_parameters( num_dims, level, 
                                            index_norm_order = index_norm_order )
            index_generator.build_isotropic_index_set()
            print level, index_norm_order, index_generator.num_indices
            if ( index_generator.num_indices > 3003 ):
                break
            
            cv_params = {}
            cv_params['solver'] = solver_type
            cv_params['order'] = level
            cv_params['index_norm_order'] = index_norm_order

            if ( cv_params['solver'] > 1 or 
                 index_generator.num_indices <= build_pts.shape[1] ):
                # only do least squares on over-determined systems
                cv_params_grid.append( cv_params  )
            else:
                break

            level += 1

    print cv_params_grid

    # cv_iterator = LeaveOneOutCrossValidationIterator()    
    cv_iterator = KFoldCrossValidationIterator( num_folds = num_folds )
    CV = GridSearchCrossValidation( cv_iterator, pce,
                                    use_predictor_cross_validation = True,
                                    use_fast_predictor_cross_validation = True )
    t0 = time.time()
    CV.run( build_pts, build_vals, cv_params_grid )
    time_taken = time.time() - t0
    print 'cross validation took ', time_taken, ' seconds'
    
    print "################"
    print "Best cv params: ", CV.best_cv_params
    print "Best cv score: ", CV.best_score
    print "################"

    #for i in xrange( len( CV.cv_params_set ) ):
    #    print CV.cv_params_set[i], CV.scores[i]

    best_order = CV.best_cv_params['order']
    best_index_norm_order = CV.best_cv_params['index_norm_order']

    best_pce = PCE( num_dims, 
                    order = best_order, 
                    basis = basis, 
                    func_domain = domain,
                    index_norm_order = best_index_norm_order)
    V = best_pce.vandermonde( build_pts ).T
    best_pce.set_solver( CV.best_cv_params['solver'] )
    if  cv_params['solver'] > 1 :
        best_res_tol = CV.best_cv_params['norm_residual']
        best_pce.linear_solver.residual_tolerance = best_res_tol
        
    sols, sol_metrics = best_pce.linear_solver.solve( V, build_vals )
    coeff = sols[:,-1]

    best_pce.set_coefficients( coeff )
    error = abs( build_vals - best_pce.evaluate_set( build_pts ) )
    print max( error )

    print 'Evaluating best pce at test points'
    num_test_pts = test_pts.shape[1]
    pce_vals_pred = best_pce.evaluate_set( test_pts ).T
    print test_vals.shape, pce_vals_pred.shape
    error = test_vals.squeeze() - pce_vals_pred
    linf_error = numpy.max( numpy.absolute( error ) )
    l2_error = numpy.sqrt( numpy.dot( error.T, error ) / num_test_pts )
    mean = numpy.mean( pce_vals_pred )
    var =  numpy.var( pce_vals_pred )
    pce_mean = best_pce.mean()
    pce_var = best_pce.variance()

    if results_file is not None:
        results_file.write( '%1.15e' %linf_error + ',' +  '%1.15e' %l2_error + 
                            ',' +  '%1.15e' %mean + ',' +  '%1.15e' %var + 
                            ',%1.15e' %pce_mean + ',' + '%1.15e' %pce_var + '\n')

    print "linf error: ", linf_error
    print "l2 error: ", l2_error
    print "mean: ", mean 
    print "var: ", var
    print "pce mean: ", pce_mean 
    print "pce var: ", pce_var

    me, te, ie = best_pce.get_sensitivities()
    interaction_values, interaction_terms = best_pce.get_interactions()

    show = False
    fignum = 1
    filename = 'oscillator-individual-interactions.png'
    plot_interaction_values( interaction_values, interaction_terms, title = 'Sobol indices', truncation_pct = 0.95, filename = filename, show = show,
                             fignum = fignum )
    fignum += 1
    filename = 'oscillator-dimension-interactions.png'
    plot_interaction_effects( ie, title = 'Dimension-wise joint effects', truncation_pct = 0.95, filename = filename, show = show,fignum = fignum   )
    fignum += 1
    filename = 'oscillator-main-effects.png'
    plot_main_effects( me, truncation_pct = 0.95, title = 'Main effect sensitivity indices', filename = filename, show = show, fignum = fignum  )
    fignum += 1
    filename = 'oscillator-total-effects.png'
    plot_total_effects( te, truncation_pct = 0.95, title = 'Total effect sensitivity indices', filename = filename, show = show, fignum = fignum  )
    fignum += 1

    from scipy.stats.kde import gaussian_kde
    pylab.figure( fignum  )
    pce_kde = gaussian_kde( pce_vals_pred )
    pce_kde_x = numpy.linspace( pce_vals_pred.min(), pce_vals_pred.max(), 100 )
    pce_kde_y = pce_kde( pce_kde_x )
    pylab.plot( pce_kde_x, pce_kde_y,label = 'pdf of surrogate' )
    true_kde = gaussian_kde( test_vals )
    true_kde_x = numpy.linspace( test_vals.min(), test_vals.max(), 100 )
    true_kde_y = true_kde( true_kde_x )
    pylab.plot( true_kde_x, true_kde_y, label = 'true pdf' )
    pylab.legend(loc=2)
    pylab.show()