예제 #1
0
    def get_vntr_matcher_hmm(self, read_length):
        """Try to load trained HMM for this VNTR
        If there was no trained HMM, it will build one and store it for later usage
        """
        logging.info('Using read length %s' % read_length)
        copies = self.get_copies_for_hmm(read_length)

        base_name = str(
            self.reference_vntr.id) + '_' + str(read_length) + '.json'
        stored_hmm_file = settings.TRAINED_HMMS_DIR + base_name
        if settings.USE_TRAINED_HMMS and os.path.isfile(stored_hmm_file):
            model = Model()
            model = model.from_json(stored_hmm_file)
            return model

        flanking_region_size = read_length
        vntr_matcher = self.build_vntr_matcher_hmm(copies,
                                                   flanking_region_size)

        json_str = vntr_matcher.to_json()
        with open(stored_hmm_file, 'w') as outfile:
            outfile.write(json_str)
        return vntr_matcher
예제 #2
0
파일: hmm_utils.py 프로젝트: nh13/adVNTR
def build_reference_repeat_finder_hmm(patterns, copies=1):
    pattern = patterns[0]
    model = Model(name="HMM Model")
    insert_distribution = DiscreteDistribution({
        'A': 0.25,
        'C': 0.25,
        'G': 0.25,
        'T': 0.25
    })

    last_end = None
    start_random_matches = State(insert_distribution,
                                 name='start_random_matches')
    end_random_matches = State(insert_distribution, name='end_random_matches')
    model.add_states([start_random_matches, end_random_matches])
    for repeat in range(copies):
        insert_states = []
        match_states = []
        delete_states = []
        for i in range(len(pattern) + 1):
            insert_states.append(
                State(insert_distribution, name='I%s_%s' % (i, repeat)))

        for i in range(len(pattern)):
            distribution_map = dict({
                'A': 0.01,
                'C': 0.01,
                'G': 0.01,
                'T': 0.01
            })
            distribution_map[pattern[i]] = 0.97
            match_states.append(
                State(DiscreteDistribution(distribution_map),
                      name='M%s_%s' % (str(i + 1), repeat)))

        for i in range(len(pattern)):
            delete_states.append(
                State(None, name='D%s_%s' % (str(i + 1), repeat)))

        unit_start = State(None, name='unit_start_%s' % repeat)
        unit_end = State(None, name='unit_end_%s' % repeat)
        model.add_states(insert_states + match_states + delete_states +
                         [unit_start, unit_end])
        last = len(delete_states) - 1

        if repeat > 0:
            model.add_transition(last_end, unit_start, 0.5)
        else:
            model.add_transition(model.start, unit_start, 0.5)
            model.add_transition(model.start, start_random_matches, 0.5)
            model.add_transition(start_random_matches, unit_start, 0.5)
            model.add_transition(start_random_matches, start_random_matches,
                                 0.5)

        model.add_transition(unit_end, end_random_matches, 0.5)
        if repeat == copies - 1:
            model.add_transition(unit_end, model.end, 0.5)
            model.add_transition(end_random_matches, end_random_matches, 0.5)
            model.add_transition(end_random_matches, model.end, 0.5)

        model.add_transition(unit_start, match_states[0], 0.98)
        model.add_transition(unit_start, delete_states[0], 0.01)
        model.add_transition(unit_start, insert_states[0], 0.01)

        model.add_transition(insert_states[0], insert_states[0], 0.01)
        model.add_transition(insert_states[0], delete_states[0], 0.01)
        model.add_transition(insert_states[0], match_states[0], 0.98)

        model.add_transition(delete_states[last], unit_end, 0.99)
        model.add_transition(delete_states[last], insert_states[last + 1],
                             0.01)

        model.add_transition(match_states[last], unit_end, 0.99)
        model.add_transition(match_states[last], insert_states[last + 1], 0.01)

        model.add_transition(insert_states[last + 1], insert_states[last + 1],
                             0.01)
        model.add_transition(insert_states[last + 1], unit_end, 0.99)

        for i in range(0, len(pattern)):
            model.add_transition(match_states[i], insert_states[i + 1], 0.01)
            model.add_transition(delete_states[i], insert_states[i + 1], 0.01)
            model.add_transition(insert_states[i + 1], insert_states[i + 1],
                                 0.01)
            if i < len(pattern) - 1:
                model.add_transition(insert_states[i + 1], match_states[i + 1],
                                     0.98)
                model.add_transition(insert_states[i + 1],
                                     delete_states[i + 1], 0.01)

                model.add_transition(match_states[i], match_states[i + 1],
                                     0.98)
                model.add_transition(match_states[i], delete_states[i + 1],
                                     0.01)

                model.add_transition(delete_states[i], delete_states[i + 1],
                                     0.01)
                model.add_transition(delete_states[i], match_states[i + 1],
                                     0.98)

        last_end = unit_end

    model.bake()
    if len(patterns) > 1:
        # model.fit(patterns, algorithm='baum-welch', transition_pseudocount=1, use_pseudocount=True)
        fit_patterns = [pattern * copies for pattern in patterns]
        model.fit(fit_patterns,
                  algorithm='viterbi',
                  transition_pseudocount=1,
                  use_pseudocount=True)

    return model
예제 #3
0
파일: hmm_utils.py 프로젝트: nh13/adVNTR
def get_constant_number_of_repeats_matcher_hmm(patterns, copies):
    model = Model(name="Repeating Pattern Matcher HMM Model")

    transitions, emissions = build_profile_hmm_for_repeats(
        patterns, settings.MAX_ERROR_RATE)
    matches = [m for m in emissions.keys() if m.startswith('M')]

    last_end = None
    for repeat in range(copies):
        insert_states = []
        match_states = []
        delete_states = []
        for i in range(len(matches) + 1):
            insert_distribution = DiscreteDistribution(emissions['I%s' % i])
            insert_states.append(
                State(insert_distribution, name='I%s_%s' % (i, repeat)))

        for i in range(1, len(matches) + 1):
            match_distribution = DiscreteDistribution(emissions['M%s' % i])
            match_states.append(
                State(match_distribution, name='M%s_%s' % (str(i), repeat)))

        for i in range(1, len(matches) + 1):
            delete_states.append(State(None, name='D%s_%s' % (str(i), repeat)))

        unit_start = State(None, name='unit_start_%s' % repeat)
        unit_end = State(None, name='unit_end_%s' % repeat)
        model.add_states(insert_states + match_states + delete_states +
                         [unit_start, unit_end])
        n = len(delete_states) - 1

        if repeat > 0:
            model.add_transition(last_end, unit_start, 1)
        else:
            model.add_transition(model.start, unit_start, 1)

        if repeat == copies - 1:
            model.add_transition(unit_end, model.end, 1)

        model.add_transition(unit_start, match_states[0],
                             transitions['unit_start']['M1'])
        model.add_transition(unit_start, delete_states[0],
                             transitions['unit_start']['D1'])
        model.add_transition(unit_start, insert_states[0],
                             transitions['unit_start']['I0'])

        model.add_transition(insert_states[0], insert_states[0],
                             transitions['I0']['I0'])
        model.add_transition(insert_states[0], delete_states[0],
                             transitions['I0']['D1'])
        model.add_transition(insert_states[0], match_states[0],
                             transitions['I0']['M1'])

        model.add_transition(delete_states[n], unit_end,
                             transitions['D%s' % (n + 1)]['unit_end'])
        model.add_transition(delete_states[n], insert_states[n + 1],
                             transitions['D%s' % (n + 1)]['I%s' % (n + 1)])

        model.add_transition(match_states[n], unit_end,
                             transitions['M%s' % (n + 1)]['unit_end'])
        model.add_transition(match_states[n], insert_states[n + 1],
                             transitions['M%s' % (n + 1)]['I%s' % (n + 1)])

        model.add_transition(insert_states[n + 1], insert_states[n + 1],
                             transitions['I%s' % (n + 1)]['I%s' % (n + 1)])
        model.add_transition(insert_states[n + 1], unit_end,
                             transitions['I%s' % (n + 1)]['unit_end'])

        for i in range(1, len(matches) + 1):
            model.add_transition(match_states[i - 1], insert_states[i],
                                 transitions['M%s' % i]['I%s' % i])
            model.add_transition(delete_states[i - 1], insert_states[i],
                                 transitions['D%s' % i]['I%s' % i])
            model.add_transition(insert_states[i], insert_states[i],
                                 transitions['I%s' % i]['I%s' % i])
            if i < len(matches):
                model.add_transition(insert_states[i], match_states[i],
                                     transitions['I%s' % i]['M%s' % (i + 1)])
                model.add_transition(insert_states[i], delete_states[i],
                                     transitions['I%s' % i]['D%s' % (i + 1)])

                model.add_transition(match_states[i - 1], match_states[i],
                                     transitions['M%s' % i]['M%s' % (i + 1)])
                model.add_transition(match_states[i - 1], delete_states[i],
                                     transitions['M%s' % i]['D%s' % (i + 1)])

                model.add_transition(delete_states[i - 1], match_states[i],
                                     transitions['D%s' % i]['M%s' % (i + 1)])
                model.add_transition(delete_states[i - 1], delete_states[i],
                                     transitions['D%s' % i]['D%s' % (i + 1)])

        last_end = unit_end

    model.bake(merge=None)
    return model
예제 #4
0
파일: hmm_utils.py 프로젝트: nh13/adVNTR
def get_suffix_matcher_hmm(pattern):
    model = Model(name="Suffix Matcher HMM Model")
    insert_distribution = DiscreteDistribution({
        'A': 0.25,
        'C': 0.25,
        'G': 0.25,
        'T': 0.25
    })
    insert_states = []
    match_states = []
    delete_states = []
    hmm_name = 'suffix'
    for i in range(len(pattern) + 1):
        insert_states.append(
            State(insert_distribution, name='I%s_%s' % (i, hmm_name)))

    for i in range(len(pattern)):
        distribution_map = dict({'A': 0.01, 'C': 0.01, 'G': 0.01, 'T': 0.01})
        distribution_map[pattern[i]] = 0.97
        match_states.append(
            State(DiscreteDistribution(distribution_map),
                  name='M%s_%s' % (str(i + 1), hmm_name)))

    for i in range(len(pattern)):
        delete_states.append(
            State(None, name='D%s_%s' % (str(i + 1), hmm_name)))

    unit_start = State(None, name='suffix_start_%s' % hmm_name)
    unit_end = State(None, name='suffix_end_%s' % hmm_name)
    model.add_states(insert_states + match_states + delete_states +
                     [unit_start, unit_end])
    last = len(delete_states) - 1

    model.add_transition(model.start, unit_start, 1)

    model.add_transition(unit_end, model.end, 1)

    model.add_transition(unit_start, delete_states[0], 0.01)
    model.add_transition(unit_start, insert_states[0], 0.01)
    for i in range(len(pattern)):
        model.add_transition(unit_start, match_states[i], 0.98 / len(pattern))

    model.add_transition(insert_states[0], insert_states[0], 0.01)
    model.add_transition(insert_states[0], delete_states[0], 0.01)
    model.add_transition(insert_states[0], match_states[0], 0.98)

    model.add_transition(delete_states[last], unit_end, 0.99)
    model.add_transition(delete_states[last], insert_states[last + 1], 0.01)

    model.add_transition(match_states[last], unit_end, 0.99)
    model.add_transition(match_states[last], insert_states[last + 1], 0.01)

    model.add_transition(insert_states[last + 1], insert_states[last + 1],
                         0.01)
    model.add_transition(insert_states[last + 1], unit_end, 0.99)

    for i in range(0, len(pattern)):
        model.add_transition(match_states[i], insert_states[i + 1], 0.01)
        model.add_transition(delete_states[i], insert_states[i + 1], 0.01)
        model.add_transition(insert_states[i + 1], insert_states[i + 1], 0.01)
        if i < len(pattern) - 1:
            model.add_transition(insert_states[i + 1], match_states[i + 1],
                                 0.98)
            model.add_transition(insert_states[i + 1], delete_states[i + 1],
                                 0.01)

            model.add_transition(match_states[i], match_states[i + 1], 0.98)
            model.add_transition(match_states[i], delete_states[i + 1], 0.01)

            model.add_transition(delete_states[i], delete_states[i + 1], 0.01)
            model.add_transition(delete_states[i], match_states[i + 1], 0.98)

    model.bake(merge=None)

    return model
예제 #5
0
infinite model, with no extra work! This change is passed on to all the
algorithms.
'''

from pomegranate import *
from pomegranate import HiddenMarkovModel as Model
import itertools as it
import numpy as np

# Define the states
s1 = State(NormalDistribution(5, 2), name="S1")
s2 = State(NormalDistribution(15, 2), name="S2")
s3 = State(NormalDistribution(25, 2), name="S3 ")

# Define the transitions
model = Model("infinite")
model.add_transition(model.start, s1, 0.7)
model.add_transition(model.start, s2, 0.2)
model.add_transition(model.start, s3, 0.1)
model.add_transition(s1, s1, 0.6)
model.add_transition(s1, s2, 0.1)
model.add_transition(s1, s3, 0.3)
model.add_transition(s2, s1, 0.4)
model.add_transition(s2, s2, 0.4)
model.add_transition(s2, s3, 0.2)
model.add_transition(s3, s1, 0.05)
model.add_transition(s3, s2, 0.15)
model.add_transition(s3, s3, 0.8)
model.bake()

sequence = [4.8, 5.6, 24.1, 25.8, 14.3, 26.5, 15.9, 5.5, 5.1]
예제 #6
0
# Contact: Jacob Schreiber
#		   [email protected]
"""
Example rainy-sunny HMM using yahmm. Example drawn from the wikipedia HMM
article: http://en.wikipedia.org/wiki/Hidden_Markov_model describing what
Bob likes to do on rainy or sunny days.
"""

from pomegranate import *
from pomegranate import HiddenMarkovModel as Model
import random
import math

random.seed(0)

model = Model(name="Rainy-Sunny")

# Emission probabilities
rainy = State(DiscreteDistribution({
    'walk': 0.1,
    'shop': 0.4,
    'clean': 0.5
}),
              name='Rainy')
sunny = State(DiscreteDistribution({
    'walk': 0.6,
    'shop': 0.3,
    'clean': 0.1
}),
              name='Sunny')
예제 #7
0
#!/usr/bin/env python2.7
# example.py: Yet Another Hidden Markov Model library
# Contact: Jacob Schreiber ( [email protected] )
"""
A simple example highlighting how to build a model using states, add
transitions, and then run the algorithms, including showing how training
on a sequence improves the probability of the sequence.
"""

import random
from pomegranate import *
from pomegranate import HiddenMarkovModel as Model

random.seed(0)
model = Model(name="ExampleModel")
distribution = UniformDistribution(0.0, 1.0)
state = State(distribution, name="uniform")
state2 = State(NormalDistribution(0, 2), name="normal")
silent = State(None, name="silent")
model.add_state(state)
model.add_state(state2)

model.add_transition(state, state, 0.4)
model.add_transition(state, state2, 0.4)
model.add_transition(state2, state2, 0.4)
model.add_transition(state2, state, 0.4)

model.add_transition(model.start, state, 0.5)
model.add_transition(model.start, state2, 0.5)
model.add_transition(state, model.end, 0.2)
model.add_transition(state2, model.end, 0.2)