def plotSuperPixelImage(sourceImage, labelledImage, orientation): print "\n*Now plotting source & labelled image for visual comparison." plt.interactive(1) plt.figure() pomio.showClassColours() plt.figure() print "*Unique labels from superpixel classification = ", np.unique(labelledImage) plt.subplot(1,2,1) plt.imshow(sourceImage, origin=orientation) plt.subplot(1,2,2) #pomio.showLabels(labelledImage) plt.imshow(labelledImage, origin=orientation)
def plotSuperPixelImage(sourceImage, labelledImage, orientation): print "\n*Now plotting source & labelled image for visual comparison." plt.interactive(1) plt.figure() pomio.showClassColours() plt.figure() print "*Unique labels from superpixel classification = ", np.unique( labelledImage) plt.subplot(1, 2, 1) plt.imshow(sourceImage, origin=orientation) plt.subplot(1, 2, 2) #pomio.showLabels(labelledImage) plt.imshow(labelledImage, origin=orientation)
cmap = [\ ( ( 0,255, 0),( 0,128, 0) ), \ ( (200,100, 20),(128,128, 0) ), \ ( (255, 0, 0),(128, 0, 0) ), \ ( ( 0, 0,255),( 64,128, 0) ), \ ( (100,100,100),(128, 64,128) ), \ ] infile = sys.argv[1] outfile= sys.argv[2] image = skimage.io.imread(infile) plt.interactive(1) plt.figure() pomio.showClassColours() plt.figure() plt.imshow(image) plt.title('input labels') #plt.waitforbuttonpress() # Make the output image newimg = image.copy() # for each colour make the transfer nc = 3 # number colour channels for cpair in cmap: clrFrom = cpair[0]
nbClasses = pomio.getNumClasses() cpnew = np.zeros( (nbRows, nbCols, nbClasses) ) for i in range( classProbs.shape[2] ): # stuff this set of probs to new label cpnew[:,:,clfr.classes_[i]] = classProbs[:,:,i] classProbs = cpnew del cpnew maxLabel = np.argmax( classProbs, 2 ) pomio.showLabels(maxLabel, colourMap) if args.verbose: plt.title('raw clfr labels') plt.figure() pomio.showClassColours( classNames, colourMap ) plt.draw() if 0 and args.interactive: plt.waitforbuttonpress() #print classProbs if dbgMode and args.verbose: for i in range( classProbs.shape[2] ): plt.imshow( classProbs[:,:,i] ) plt.title( 'class %d: %s' % (i,classNames[i]) ) plt.waitforbuttonpress() nhoodSz = args.nhoodSz sigsq = amntools.estimateNeighbourRMSPixelDiff(imgRGB,nhoodSz) ** 2