def get_response_content(fs): parental_state = multiline_state_to_ndarray(fs.parental_state) nchromosomes, npositions = parental_state.shape if nchromosomes * npositions > 10: raise ValueError('at most 2^10 states are allowed') # mutation = 0.5 * fs.mutation_param recombination = 0.5 * fs.recombination_param selection = fs.selection_param # out = StringIO() print >> out, 'number of chromosomes:' print >> out, nchromosomes print >> out print >> out, 'number of positions per chromosome:' print >> out, npositions print >> out # define the transition matrix P = get_transition_matrix( selection, mutation, recombination, nchromosomes, npositions) # sample the endpoint conditioned path initial_integer_state = popgenmarkov.bin2d_to_int(initial_state) final_integer_state = popgenmarkov.bin2d_to_int(final_state) path = sample_endpoint_conditioned_path( initial_integer_state, final_integer_state, fs.ngenerations, P) print >> out, 'sampled endpoint conditioned path, including endpoints:' print >> out for integer_state in path: # print integer_state print >> out, ndarray_to_multiline_state( popgenmarkov.int_to_bin2d( integer_state, nchromosomes, npositions)) print >> out return out.getvalue()
def test_regress_mutation_probability_endpoint_conditioning(self): ngenerations = 10 selection = 2.0 mutation = 0.0001 recombination = 0.001 nchromosomes = 2 npositions = 4 K_initial = np.array([ [1,1,1,1], [0,0,0,0]], dtype=np.int8) K_final = np.array([ [1,1,0,0], [0,0,1,1]], dtype=np.int8) # ngenboundaries = ngenerations - 1 no_mutation_prior = (1 - mutation)**( npositions*ngenboundaries*nchromosomes) # initial_long = popgenmarkov.bin2d_to_int(K_initial) final_long = popgenmarkov.bin2d_to_int(K_final) ci_to_short, short_to_count, sorted_chrom_lists = get_state_space_info( nchromosomes, npositions) initial_ci = chroms_to_index( sorted(popgenmarkov.bin_to_int(row) for row in K_initial), npositions) initial_short = ci_to_short[initial_ci] final_ci = chroms_to_index( sorted(popgenmarkov.bin_to_int(row) for row in K_final), npositions) final_short = ci_to_short[final_ci] # get an answer using the less efficient methods P_sr = popgenmarkov.get_selection_recombination_transition_matrix( selection, recombination, nchromosomes, npositions) P_m = popgenmarkov.get_mutation_transition_matrix( mutation, nchromosomes, npositions) p_b_given_a = linalg.matrix_power(np.dot(P_sr, P_m), ngenerations-1)[ initial_long, final_long] p_b_given_a_no_mutation = linalg.matrix_power(P_sr, ngenerations-1)[ initial_long, final_long] no_mutation_posterior = ( no_mutation_prior * p_b_given_a_no_mutation) / p_b_given_a # get an answer using the more efficient methods P_sr_s = get_selection_recombination_transition_matrix_s( ci_to_short, short_to_count, sorted_chrom_lists, selection, recombination, nchromosomes, npositions) P_m_s = get_mutation_transition_matrix_s( ci_to_short, short_to_count, sorted_chrom_lists, mutation, nchromosomes, npositions) p_b_given_a_s = linalg.matrix_power( np.dot(P_sr_s, P_m_s), ngenerations-1)[ initial_short, final_short] p_b_given_a_no_mutation_s = linalg.matrix_power( P_sr_s, ngenerations-1)[ initial_short, final_short] no_mutation_posterior_s = ( no_mutation_prior * p_b_given_a_no_mutation_s) / p_b_given_a_s # self.assertTrue( np.allclose(no_mutation_posterior, no_mutation_posterior_s))
def test_regress_mutation_probability_endpoint_conditioning(self): ngenerations = 10 selection = 2.0 mutation = 0.0001 recombination = 0.001 nchromosomes = 2 npositions = 4 K_initial = np.array([[1, 1, 1, 1], [0, 0, 0, 0]], dtype=np.int8) K_final = np.array([[1, 1, 0, 0], [0, 0, 1, 1]], dtype=np.int8) # ngenboundaries = ngenerations - 1 no_mutation_prior = (1 - mutation)**(npositions * ngenboundaries * nchromosomes) # initial_long = popgenmarkov.bin2d_to_int(K_initial) final_long = popgenmarkov.bin2d_to_int(K_final) ci_to_short, short_to_count, sorted_chrom_lists = get_state_space_info( nchromosomes, npositions) initial_ci = chroms_to_index( sorted(popgenmarkov.bin_to_int(row) for row in K_initial), npositions) initial_short = ci_to_short[initial_ci] final_ci = chroms_to_index( sorted(popgenmarkov.bin_to_int(row) for row in K_final), npositions) final_short = ci_to_short[final_ci] # get an answer using the less efficient methods P_sr = popgenmarkov.get_selection_recombination_transition_matrix( selection, recombination, nchromosomes, npositions) P_m = popgenmarkov.get_mutation_transition_matrix( mutation, nchromosomes, npositions) p_b_given_a = linalg.matrix_power(np.dot(P_sr, P_m), ngenerations - 1)[initial_long, final_long] p_b_given_a_no_mutation = linalg.matrix_power( P_sr, ngenerations - 1)[initial_long, final_long] no_mutation_posterior = (no_mutation_prior * p_b_given_a_no_mutation) / p_b_given_a # get an answer using the more efficient methods P_sr_s = get_selection_recombination_transition_matrix_s( ci_to_short, short_to_count, sorted_chrom_lists, selection, recombination, nchromosomes, npositions) P_m_s = get_mutation_transition_matrix_s(ci_to_short, short_to_count, sorted_chrom_lists, mutation, nchromosomes, npositions) p_b_given_a_s = linalg.matrix_power(np.dot(P_sr_s, P_m_s), ngenerations - 1)[initial_short, final_short] p_b_given_a_no_mutation_s = linalg.matrix_power( P_sr_s, ngenerations - 1)[initial_short, final_short] no_mutation_posterior_s = (no_mutation_prior * p_b_given_a_no_mutation_s) / p_b_given_a_s # self.assertTrue( np.allclose(no_mutation_posterior, no_mutation_posterior_s))