def test_metallicity(): """ Test isochrone generation at different metallicities """ # Define isochrone parameters logAge = np.log10(5 * 10**6.) AKs = 0.8 dist = 4000 evo_model = evolution.MISTv1() atm_func = atmospheres.get_phoenixv16_atmosphere red_law = reddening.RedLawHosek18b() filt_list = ['wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m'] # Start with a solar metallicity isochrone metallicity = 0.0 # Make Isochrone object, with high mass_sampling to decrease compute time my_iso = synthetic.IsochronePhot(logAge, AKs, dist, metallicity=metallicity, evo_model=evo_model, atm_func=atm_func, red_law=red_law, filters=filt_list, mass_sampling=10) # Test isochrone properties assert my_iso.points.meta['METAL_IN'] == 0.0 assert os.path.exists('iso_6.70_0.80_04000_p00.fits') # Now for non-solar metallicity metallicity = -1.5 # Make Isochrone object, with high mass_sampling to decrease compute time my_iso = synthetic.IsochronePhot(logAge, AKs, dist, metallicity=metallicity, evo_model=evo_model, atm_func=atm_func, red_law=red_law, filters=filt_list, mass_sampling=10) metal_act = np.log10(0.00047 / 0.0142) # For Mist isochrones # Test isochrone properties assert my_iso.points.meta['METAL_IN'] == -1.5 assert my_iso.points.meta['METAL_ACT'] == metal_act assert os.path.exists('iso_6.70_0.80_04000_m15.fits') return
import numpy as np import pandas as pd from astropy.io import ascii from astropy.io import fits import matplotlib.pyplot as plt from popstar import synthetic, evolution, atmospheres, reddening, ifmr from popstar.imf import imf, multiplicity # Define isochrone parameters logAge = 9.6 # Age in log(years) AKs = 0 # extinction in mags dist = 1000 # distance in parsec metallicities = [-1] # Metallicity in [M/H] # Define evolution/atmosphere models and extinction law evo_model = evolution.MISTv1() atm_func = atmospheres.get_merged_atmosphere red_law = reddening.RedLawHosek18b() # Also specify filters for synthetic photometry (optional). Here we use # the HST WFC3-IR F127M, F139M, and F153M filters filt_list = ['wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m'] # Make Isochrone object. Note that is calculation will take a few minutes, unless the # isochrone has been generated previously. for metallicity in metallicities: my_iso = synthetic.IsochronePhot(logAge, AKs, dist, metallicity=metallicity, evo_model=evo_model, atm_func=atm_func, red_law=red_law, filters=filt_list) print(my_iso.save_file)
def test_IsochronePhot(plot=False): from popstar import synthetic as syn from popstar import evolution, atmospheres, reddening logAge = 6.7 AKs = 2.7 distance = 4000 filt_list = ['wfc3,ir,f127m', 'nirc2,J'] mass_sampling = 1 iso_dir = 'iso/' evo_model = evolution.MISTv1() atm_func = atmospheres.get_merged_atmosphere redlaw = reddening.RedLawNishiyama09() startTime = time.time() iso = syn.IsochronePhot(logAge, AKs, distance, evo_model=evo_model, atm_func=atm_func, red_law=redlaw, filters=filt_list, mass_sampling=mass_sampling, iso_dir=iso_dir) endTime = time.time() print('IsochronePhot generated in: %d seconds' % (endTime - startTime)) # Typically takes 120 seconds if file is regenerated. # Limited by pysynphot.Icat call in atmospheres.py assert iso.points.meta['LOGAGE'] == logAge assert iso.points.meta['AKS'] == AKs assert iso.points.meta['DISTANCE'] == distance assert len(iso.points) > 100 assert 'm_nirc2_J' in iso.points.colnames if plot: plt.figure(1) iso.plot_CMD('mag814w', 'mag160w') plt.figure(2) iso.plot_mass_magnitude('mag160w') # Finally, let's test the isochronePhot file generation assert os.path.exists('{0}/iso_{1:.2f}_{2:4.2f}_{3:4s}_p00.fits'.format( iso_dir, logAge, AKs, str(distance).zfill(5))) # Check 1: If we try to remake the isochrone, does it read the file rather than # making a new one iso_new = syn.IsochronePhot(logAge, AKs, distance, evo_model=evo_model, atm_func=atm_func, red_law=redlaw, filters=filt_list, mass_sampling=mass_sampling, iso_dir=iso_dir) assert iso_new.recalc == False # Check 2: If we change evo model, atmo model, or redlaw, # does IsochronePhot regenerate the isochrone and overwrite the existing one? evo2 = evolution.MergedBaraffePisaEkstromParsec() mass_sampling = 20 iso_new = syn.IsochronePhot(logAge, AKs, distance, evo_model=evo2, atm_func=atm_func, red_law=redlaw, filters=filt_list, mass_sampling=mass_sampling, iso_dir=iso_dir) assert iso_new.recalc == True redlaw2 = reddening.RedLawHosek18b() iso_new = syn.IsochronePhot(logAge, AKs, distance, evo_model=evo2, atm_func=atm_func, red_law=redlaw2, filters=filt_list, mass_sampling=mass_sampling, iso_dir=iso_dir) assert iso_new.recalc == True atm2 = atmospheres.get_castelli_atmosphere iso_new = syn.IsochronePhot(logAge, AKs, distance, evo_model=evo2, atm_func=atm2, red_law=redlaw2, filters=filt_list, mass_sampling=mass_sampling, iso_dir=iso_dir) assert iso_new.recalc == True return
def test_iso_wave(): """ Test to make sure isochrones generated have spectra with the proper wavelength range, and that the user has control over that wavelength range (propagated through IsochronePhot) """ # Define isochrone parameters logAge = np.log10(5 * 10**6.) # Age in log(years) AKs = 0.8 # extinction in mags dist = 4000 # distance in parsec # Define evolution/atmosphere models and extinction law (optional) evo_model = evolution.MergedBaraffePisaEkstromParsec() atm_func = atmospheres.get_merged_atmosphere red_law = reddening.RedLawHosek18b() # Also specify filters for synthetic photometry (optional). Here we use # the HST WFC3-IR F127M, F139M, and F153M filters filt_list = ['wfc3,ir,f127m'] # First, let's make sure the vega spectrum has the proper limits vega = synthetic.Vega() assert np.min(vega.wave) == 995 assert np.max(vega.wave) == 100200 # Make Isochrone object. Will use wave_range = [3000,52000]. # Make sure range matches to resolution of atmosphere. wave_range1 = [3000, 52000] my_iso = synthetic.IsochronePhot(logAge, AKs, dist, evo_model=evo_model, atm_func=atm_func, red_law=red_law, filters=filt_list, mass_sampling=10, wave_range=wave_range1, recomp=True) test = my_iso.spec_list[0] assert np.min(test.wave) == 3010 assert np.max(test.wave) == 51900 # Now let's try changing the wave range. Is it carried through # properly? wave_range2 = [1200, 90000] my_iso = synthetic.IsochronePhot(logAge, AKs, dist, evo_model=evo_model, atm_func=atm_func, red_law=red_law, filters=filt_list, mass_sampling=10, wave_range=wave_range2, recomp=True) test2 = my_iso.spec_list[0] assert np.min(test2.wave) == 1205 assert np.max(test2.wave) == 89800 # Does the error exception catch the bad wave_range? wave_range3 = [1200, 1000000] try: my_iso = synthetic.IsochronePhot(logAge, AKs, dist, evo_model=evo_model, atm_func=atm_func, red_law=red_law, filters=filt_list, mass_sampling=10, wave_range=wave_range3, recomp=True) print( 'WAVE TEST FAILED!!! Should have crashed here, wavelength range out of bounds' ) pdb.set_trace() except: print('Wavelength out of bound condition passed. Test is good') pass return
def test_cluster_mass(): from popstar import synthetic as syn from popstar import atmospheres as atm from popstar import evolution from popstar import reddening from popstar import ifmr from popstar.imf import imf from popstar.imf import multiplicity # Define cluster parameters logAge = 6.7 AKs = 2.4 distance = 4000 cluster_mass = 10**5. mass_sampling = 5 # Test filters filt_list = ['nirc2,J', 'nirc2,Kp'] startTime = time.time() # Define evolution/atmosphere models and extinction law evo = evolution.MISTv1() atm_func = atmospheres.get_merged_atmosphere red_law = reddening.RedLawHosek18b() iso = syn.IsochronePhot(logAge, AKs, distance, evo_model=evo, atm_func=atm_func, red_law=red_law, filters=filt_list, mass_sampling=mass_sampling) print('Constructed isochrone: %d seconds' % (time.time() - startTime)) # Now to create the cluster. imf_mass_limits = np.array([0.2, 0.5, 1, 120.0]) imf_powers = np.array([-1.3, -2.3, -2.3]) # IFMR my_ifmr = ifmr.IFMR() ########## # Start without multiplicity ########## my_imf1 = imf.IMF_broken_powerlaw(imf_mass_limits, imf_powers, multiplicity=None) print('Constructed IMF: %d seconds' % (time.time() - startTime)) cluster1 = syn.ResolvedCluster(iso, my_imf1, cluster_mass, ifmr=my_ifmr) clust1 = cluster1.star_systems print('Constructed cluster: %d seconds' % (time.time() - startTime)) # Check that the total mass is within tolerance of input mass cluster_mass_out = clust1['systemMass'].sum() assert np.abs(cluster_mass_out - cluster_mass) < 200.0 # within 200 Msun of desired mass. print('Cluster Mass: IN = ', cluster_mass, " OUT = ", cluster_mass_out) ########## # Test with multiplicity ########## multi = multiplicity.MultiplicityUnresolved() my_imf2 = imf.IMF_broken_powerlaw(imf_mass_limits, imf_powers, multiplicity=multi) print('Constructed IMF with multiples: %d seconds' % (time.time() - startTime)) cluster2 = syn.ResolvedCluster(iso, my_imf2, cluster_mass, ifmr=my_ifmr) clust2 = cluster2.star_systems print('Constructed cluster with multiples: %d seconds' % (time.time() - startTime)) # Check that the total mass is within tolerance of input mass cluster_mass_out = clust2['systemMass'].sum() assert np.abs(cluster_mass_out - cluster_mass) < 200.0 # within 200 Msun of desired mass. print('Cluster Mass: IN = ', cluster_mass, " OUT = ", cluster_mass_out) return