예제 #1
0
def train_model(layers, 
                inputs, 
                prices,
                pop_size=150,
                data_rotation=0,
                w_mutation_rate = 0.05,
                b_mutation_rate = 0.0,
                mutation_scale = 0.3,
                mutation_decay = 1.,
                reporter=None):
    # network parameters
    network_params = {
        'network': 'feedforward',
        'input': inputs.shape[1],
        'hidden': layers,
        'output': 2
    }

    # build initial population
    pop = Population(network_params,
                     pop_size,
                     mutation_scale,
                     w_mutation_rate,
                     b_mutation_rate,
                     mutation_decay,
                     socket_reporter=reporter)
                     
    g = 1 ###########
    sample_size = 500 # request.json["sampleSize"]
    
    while True:
        if not g % data_rotation: ###########
            ohlc, ta = data.get_rand_segment(sample_size) ##########
            inputs, prices = data.get_training_segment() ##########

        pop.evolve()
        gen_best = pop.run((inputs, prices), fitness_callback=calc_overperformance)
        g += 1
def train_model(layers,
                inputs,
                prices,
                pop_size=150,
                data_rotation=0,
                w_mutation_rate=0.05,
                b_mutation_rate=0.0,
                mutation_scale=0.3,
                mutation_decay=1.,
                reporter=None):
    # network parameters
    network_params = {
        'network': 'feedforward',
        'input': inputs.shape[1],
        'hidden': layers,
        'output': 2
    }

    # build initial population
    pop = Population(network_params,
                     pop_size,
                     mutation_scale,
                     w_mutation_rate,
                     b_mutation_rate,
                     mutation_decay,
                     socket_reporter=reporter)

    g = 0
    while True:
        if g % data_rotation:
            # need to rotate data here
            pass

        pop.evolve()
        gen_best = pop.run((inputs, prices), fitness_callback=calculate_profit)
        g += 1
예제 #3
0
def train(
    population: Population,
    game_config: Config,
    games: list,
    iterations: int,
    unused_cpu: int = 0,
    save_interval: int = 10,
):
    """Train the population on the requested number of iterations. Manual adaptation of main's train()."""

    population.log("\n===> TRAINING <===\n")

    multi_env = get_multi_env(pop=population, game_config=game_config)
    msg = f"Repetitive evaluating on games: {games} for {iterations} iterations"
    population.log(msg, print_result=False)

    # Iterate and evaluate over the games
    saved = True
    for iteration in range(iterations):
        # Set and randomize the games
        multi_env.set_games(games, noise=True)

        # Prepare the generation's reporters for the generation
        population.reporters.start_generation(gen=population.generation,
                                              logger=population.log)

        # Fetch the dictionary of genomes
        genomes = list(iteritems(population.population))

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        for genome in genomes:
            pool.apply_async(func=multi_env.eval_genome,
                             args=(genome, return_dict))
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished

        # Calculate the fitness from the given return_dict
        fitness = calc_pop_fitness(
            fitness_cfg=population.config.evaluation,
            game_cfg=game_config.game,
            game_obs=return_dict,
            gen=population.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]

        # Gather and report statistics
        best = None
        for g in itervalues(population.population):
            if best is None or g.fitness > best.fitness: best = g
        population.reporters.post_evaluate(population=population.population,
                                           species=population.species,
                                           best_genome=best,
                                           logger=population.log)

        # Update the population's best_genome
        genomes = sorted(population.population.items(),
                         key=lambda x: x[1].fitness,
                         reverse=True)
        population.best_fitness[population.generation] = genomes[0][1].fitness
        population.best_genome_hist[population.generation] = genomes[0]
        population.best_genome = best

        # Let population evolve
        population.evolve()

        # Update the genomes such all have one hidden node
        for g in population.population.values():
            n_hidden, _ = g.size()
            while n_hidden < 1:
                g.mutate_add_connection(population.config.genome)
                n_hidden, _ = g.size()

        # End generation
        population.reporters.end_generation(population=population.population,
                                            name=str(population),
                                            species_set=population.species,
                                            logger=population.log)

        # Save the population
        if (iteration + 1) % save_interval == 0:
            population.save()
            saved = True
        else:
            saved = False

    # Make sure that last iterations saves
    if not saved: population.save()
    # genetic parameters
    pop_size = 4
    w_mutation_rate = 0.05
    b_mutation_rate = 0.0
    mutation_scale = 0.3
    mutation_decay = 0.995
    generations = 500

    # network parameters
    network_params = {
        'network': 'recurrent',
        'timesteps': 4,
        'input': inputs_train.shape[1],
        'hidden': [16, 16, 16],
        'output': 2
    }

    # build initial population
    pop = Population(network_params, pop_size, mutation_scale, w_mutation_rate,
                     b_mutation_rate, mutation_decay)

    # run for set number of generations
    for g in range(generations):
        pop.evolve(g)
        gen_best = pop.run(inputs_train,
                           price_train,
                           fitness_callback=calculate_profit)
        gen_best.save()
        pop.test(inputs_test, price_test, fitness_callback=calculate_profit)
예제 #5
0
def single_evaluation(multi_env, parallel: bool, pop: Population,
                      unused_cpu: int):
    """
    Perform a single evaluation-iteration.
    
    :param multi_env: Environment used to execute the game-simulation in
    :param parallel: Boolean indicating if training happens in parallel or not
    :param pop: Population used to evaluate on
    :param unused_cpu: Number of CPU-cores not used during evaluation
    """
    # Prepare the generation's reporters for the generation
    pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

    # Fetch the dictionary of genomes
    genomes = list(iteritems(pop.population))

    if parallel:
        pbar = tqdm(total=len(genomes), desc="parallel training")

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        def cb(*_):
            """Update progressbar after finishing a single genome's evaluation."""
            pbar.update()

        for genome in genomes:
            pool.apply_async(func=multi_env.eval_genome,
                             args=(genome, return_dict),
                             callback=cb)
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished
        pbar.close()  # Close the progressbar
    else:
        return_dict = dict()
        for genome in tqdm(genomes, desc="sequential training"):
            multi_env.eval_genome(genome, return_dict)

    # Calculate the fitness from the given return_dict
    try:
        fitness = calc_pop_fitness(
            fitness_config=pop.config.evaluation,
            game_observations=return_dict,
            game_params=multi_env.get_game_params(),
            generation=pop.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]
    except Exception:  # TODO: Fix! Sometimes KeyError in fitness (path problem)
        pop.log(
            f"Exception at fitness calculation: \n{traceback.format_exc()}",
            print_result=False)
        warnings.warn(
            f"Exception at fitness calculation: \n{traceback.format_exc()}")
        # Set fitness to zero for genomes that have no fitness set yet
        for i, genome in genomes:
            if not genome.fitness: genome.fitness = 0.0

    # Gather and report statistics
    best = None
    for g in itervalues(pop.population):
        if best is None or g.fitness > best.fitness: best = g
    pop.reporters.post_evaluate(population=pop.population,
                                species=pop.species,
                                best_genome=best,
                                logger=pop.log)

    # Update the population's best_genome
    genomes = sorted(pop.population.items(),
                     key=lambda x: x[1].fitness,
                     reverse=True)
    pop.best_genome_hist[
        pop.generation] = genomes[:pop.config.population.genome_elitism]
    if pop.best_genome is None or best.fitness > pop.best_genome.fitness:
        pop.best_genome = best

    # Let population evolve
    pop.evolve()

    # End generation
    pop.reporters.end_generation(population=pop.population,
                                 name=str(pop),
                                 species_set=pop.species,
                                 logger=pop.log)
예제 #6
0
    def evaluate_and_evolve(
        self,
        pop: Population,
        n: int = 1,
        parallel=True,
        save_interval: int = 1,
    ):
        """
        Evaluate the population on the same set of games.
        
        :param pop: Population object
        :param n: Number of generations
        :param parallel: Parallel the code (disable parallelization for debugging purposes)
        :param save_interval: Indicates how often a population gets saved
        """
        multi_env = get_multi_env(pop=pop, game_config=self.game_config)
        msg = f"Repetitive evaluating on games: {self.games} for {n} iterations"
        pop.log(msg, print_result=False)

        # Iterate and evaluate over the games
        saved = True
        for iteration in range(n):
            # Set and randomize the games
            multi_env.set_games(self.games, noise=True)

            # Prepare the generation's reporters for the generation
            pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

            # Fetch the dictionary of genomes
            genomes = list(iteritems(pop.population))

            if parallel:
                # Initialize the evaluation-pool
                pool = mp.Pool(mp.cpu_count() - self.unused_cpu)
                manager = mp.Manager()
                return_dict = manager.dict()

                for genome in genomes:
                    pool.apply_async(func=multi_env.eval_genome,
                                     args=(genome, return_dict))
                pool.close()  # Close the pool
                pool.join(
                )  # Postpone continuation until everything is finished
            else:
                return_dict = dict()
                for genome in tqdm(genomes, desc="sequential training"):
                    multi_env.eval_genome(genome, return_dict)

            # Calculate the fitness from the given return_dict
            fitness = calc_pop_fitness(
                fitness_cfg=pop.config.evaluation,
                game_cfg=self.game_config.game,
                game_obs=return_dict,
                gen=pop.generation,
            )
            for i, genome in genomes:
                genome.fitness = fitness[i]

            # Gather and report statistics
            best = None
            for g in itervalues(pop.population):
                if best is None or g.fitness > best.fitness: best = g
            pop.reporters.post_evaluate(population=pop.population,
                                        species=pop.species,
                                        best_genome=best,
                                        logger=pop.log)

            # Update the population's best_genome
            genomes = sorted(pop.population.items(),
                             key=lambda x: x[1].fitness,
                             reverse=True)
            pop.best_fitness[pop.generation] = genomes[0][1].fitness
            pop.best_genome_hist[pop.generation] = genomes[0]
            pop.best_genome = best

            # Let population evolve
            pop.evolve()

            # End generation
            pop.reporters.end_generation(population=pop.population,
                                         name=str(pop),
                                         species_set=pop.species,
                                         logger=pop.log)

            # Save the population
            if (iteration + 1) % save_interval == 0:
                pop.save()
                saved = True
            else:
                saved = False

        # Make sure that last iterations saves
        if not saved: pop.save()
예제 #7
0
def main(topology_id: int,
         batch_size: int = 1000,
         train_batch: int = 3,
         min_finished: float = MIN_FINISHED,
         unused_cpu: int = 2,
         save_pop: bool = False,
         use_backup: bool = False):
    """Run a population infinitely long and store all its good genomes."""
    # Get the CSV used to store the results in
    csv_path, csv_name, added = get_csv_path(topology_id, use_backup=use_backup, batch_size=batch_size)
    
    # Create the population
    name = csv_name if save_pop else 'dummy'
    cfg = get_config()
    folder = get_folder(experiment_id=6)
    pop = Population(
            name=name,
            config=cfg,
            folder_name=folder,
            use_backup=use_backup,
            overwrite=True,  # Every iteration, create a new population from scratch
    )
    
    # Replace the population's initial population with the requested topologies genomes
    for g_id in pop.population.keys(): pop.population[g_id] = get_genome(topology_id, g_id=g_id, cfg=cfg)
    pop.species.speciate(config=pop.config,
                         population=pop.population,
                         generation=pop.generation,
                         logger=pop.log)
    
    # Set games and environment used for training and evaluation
    pop.log(f"\n\n\n===> RUNNING EXPERIMENT 6 <===\n")
    games_train, games_eval = get_game_ids(experiment_id=6)
    train_env = get_multi_env(config=cfg)
    eval_env = get_multi_env(config=cfg)
    eval_env.set_games(games_eval, noise=False)
    
    # Keep training and evolving the network until the complete CSV is filled
    last_saved = pop.generation
    try:
        while added < batch_size:
            t = time.localtime()
            pop.log(f"\n\n===> Selective genome creation at {added / batch_size * 100}%, "
                    f"storing in csv '{csv_path.split('/')[-1]}' "
                    f"({t.tm_hour:02d}h-{t.tm_min:02d}m-{t.tm_sec:02d}s) <===")
            
            # Train the population
            pop.log("\n===> Training <===")
            for _ in tqdm(range(train_batch), desc="Training"):
                train_env.set_games(games_train, noise=True)
                genomes = list(iteritems(pop.population))
                
                # Initialize the evaluation-pool
                pool = mp.Pool(mp.cpu_count() - unused_cpu)
                manager = mp.Manager()
                return_dict = manager.dict()
                
                for genome in genomes:
                    pool.apply_async(func=train_env.eval_genome, args=(genome, return_dict))
                pool.close()  # Close the pool
                pool.join()  # Postpone continuation until everything is finished
                
                # Calculate the fitness from the given return_dict
                fitness = calc_pop_fitness(
                        fitness_cfg=pop.config.evaluation,
                        game_cfg=cfg.game,
                        game_obs=return_dict,
                        gen=pop.generation,
                )
                for i, genome in genomes:
                    genome.fitness = fitness[i]
                
                # Update the population's best_genome
                best = None
                for g in itervalues(pop.population):
                    if best is None or g.fitness > best.fitness: best = g
                genomes = sorted(pop.population.items(), key=lambda x: x[1].fitness, reverse=True)
                pop.best_fitness[pop.generation] = genomes[0][1].fitness
                pop.best_genome_hist[pop.generation] = genomes[0]
                pop.best_genome = best
                pop.log(f"Best training fitness: {best.fitness}")
                
                # Let population evolve
                pop.evolve()
                
                # Constraint each of the population's new genomes to the given topology
                for g in pop.population.values():
                    enforce_topology(g, topology_id=topology_id)
            
            # Save the population after training
            if pop.generation - last_saved >= 100:
                pop.save()
                last_saved = pop.generation
            
            # Evaluate the current population as was done in experiment6
            pop.log("\n===> EVALUATING <===")
            genomes = list(iteritems(pop.population))
            pool = mp.Pool(mp.cpu_count() - unused_cpu)
            manager = mp.Manager()
            return_dict = manager.dict()
            for genome in genomes:
                pool.apply_async(func=eval_env.eval_genome, args=(genome, return_dict))
            pool.close()  # Close the pool
            pool.join()  # Postpone continuation until everything is finished
            
            # Calculate the fitness from the given return_dict
            finished = calc_finished_ratio(
                    fitness_cfg=cfg.evaluation,
                    game_obs=return_dict,
            )
            best = None
            for i, genome in genomes:
                genome.fitness = finished[i]
                if best is None or finished[i] > best.fitness: best = genome
            
            # Give evaluation overview of population
            pop.log(f"Best evaluation finish ratio: {round(best.fitness, 2)}")
            best_str = str(best).replace("\n", "\n\t")
            best_str += "\n\t" + str(best.nodes[2]).replace("\n", "\n\t")
            pop.log(f"Best genome: \n\t{best_str}")
            sids = list(iterkeys(pop.species.species))
            sids.sort()
            msg = f"\nPopulation '{name}' has {len(pop.species.species):d} species:" \
                  f"\n\t specie    age    size    finished    stag " \
                  f"\n\t========  =====  ======  ==========  ======"
            pop.log(msg) if pop.log else print(msg)
            for sid in sids:
                s = pop.species.species[sid]
                a = pop.generation - s.created
                n = len(s.members)
                sf = [g.fitness for g in s.members.values() if g.fitness]
                f = "--" if len(sf) == 0 else f"{max(sf):.2f}"
                st = pop.generation - s.last_improved
                msg = f"\t{sid:^8}  {a:^5}  {n:^6}  {f:^10}  {st:^6}"
                pop.log(msg) if pop.log else print(msg)
            
            # Write the result to CSV
            with open(csv_path, 'a', newline='') as f:
                writer = csv.writer(f)
                for _, g in genomes:
                    # Only write the genomes that exceed the minimum 'finished ratio' threshold!
                    if g.fitness >= min_finished:
                        writer.writerow(get_genome_parameters(g, topology_id=topology_id))
                        added += 1
    finally:
        # Remove the dummy population if it exists
        pop.save()
        path = f"population{'_backup' if use_backup else ''}/storage/{pop.folder_name}/dummy/"
        if os.path.exists(path):
            shutil.rmtree(path)