def chain_binomial_monte_carlo(beta, gamma, num_sims, num_metro_zeros, num_child_zeros, num_adult_zeros): # run many (num_sims) instances of chain binomial simulation and return average epidemic size #d_metropop, metro_ids = pop_func.import_metropop(filename_metropop, 2, 3) population_size = sum([d_metropop[x] for x in metro_ids]) threshold = 0.10 # 10% of population size is our threshold for a large epidemic d_metro_age_pop = pop_func.calc_metro_age_pop(filename_metropop, alpha) large_epidemic_sizes= [] # will keep list of outbreak sizes that are large epidemics for sim in range(1,num_sims): #incidence_time_series, outbreak_size = chain_binomial_one_simulation(d_metro_age_pop, metro_ids, beta, gamma, air_network, num_metro_zeros, num_child_zeros, num_adult_zeros, C) # Note we are not using the incidence time series right now new_cases_incidence_time_series_metro_child, new_cases_incidence_time_series_metro_adult, incidence_time_series_metro_child, incidence_time_series_metro_adult, tot_incidence_time_series_child, tot_incidence_time_series_adult, outbreak_size_child, outbreak_size_adult = chain_binomial_one_simulation(d_metro_age_pop, metro_ids, beta, gamma, air_network, num_metro_zeros, num_child_zeros, num_adult_zeros, C) outbreak_size = (outbreak_size_child + outbreak_size_adult) ## SB said don't worry about this for now ## # figure out if this is small outbreak or large epidemic #if outbreak_size > threshold * population_size: # if outbreak reached more than 10% of the population #large_epidemic_sizes.append(outbreak_size) # call it a large epidemic and save its size large_epidemic_sizes.append(outbreak_size) # calculate average large epidemic size, and how frequent they were if large_epidemic_sizes: average_epidemic_size = np.mean(large_epidemic_sizes)/float(population_size) probability_epidemic = len(large_epidemic_sizes)/float(num_sims) else: average_epidemic_size = 0 probability_epidemic = 0 return average_epidemic_size
filename_metropop = 'Dropbox/Anne_Bansal_lab/Python_Scripts/Modeling_Project/air_traffic_data/metedges.txt' d_metropop, metro_ids = pop_func.import_metropop(filename_metropop, 2, 3) filename_air_network = 'Dropbox/Anne_Bansal_lab/Python_Scripts/Modeling_Project/air_traffic_data/air_traffic_edgelist.txt' air_network = read_edgelist_anne(filename_air_network) # READ US population data us_popdata = csv.reader(open('Dropbox/Anne_Bansal_lab/SDI_Data/totalpop_age.csv', 'r'),delimiter = ',') dict_popdata, ages, years = pop_func.import_popdata(us_popdata, 0, 1, 2) dict_childpop, dict_adultpop = pop_func.pop_child_adult (dict_popdata, years) # READ Germany contact data filename_germ_contact_data = 'Dropbox/Anne_Bansal_lab/Contact_Data/polymod_germany_contact_matrix_Mossong_2008.csv' filename_germ_pop_data = 'Dropbox/Anne_Bansal_lab/UNdata_Export_2008_Germany_Population.csv' # DEFINE POPULATION PARAMETERS year = 2010 alpha = pop_func.calc_alpha(year, dict_childpop, dict_adultpop) d_metro_age_pop = pop_func.calc_metro_age_pop(filename_metropop, alpha) ch_travelers_r = 0.0 # fraction of children who travel # CONTACT MATRIX C = pop_func.calc_contact_matrix(filename_germ_contact_data, filename_germ_pop_data, alpha) # DEFINE DISEASE PARAMETERS R0 = 1.2 gamma = 0.5 # recovery rate based on (1/gamma) day infectious period #beta = calculate_beta(R0, gamma, air_network) beta = 0.015 #beta = 0.005 num_metro_zeros = 1 # set how many metros to select patients from to start with num_child_zeros = 1 num_adult_zeros = 0 time_end = 300