def run_nn_experiment(xhmc_delta_list,input_data,v_fun,test_set,type_problem): out_list = [None]*(len(xhmc_delta_list)+1) for i in range(len(out_list)): model_dict = {"num_units": 50} v_generator = wrap_V_class_with_input_data(class_constructor=v_fun, input_data=input_data, model_dict=model_dict) mcmc_meta = mcmc_sampler_settings_dict(mcmc_id=0, samples_per_chain=2000, num_chains=4, num_cpu=4, thin=1, tune_l_per_chain=1000, warmup_per_chain=1100, is_float=False, isstore_to_disk=False, allow_restart=False) if i<len(out_list)-1: input_dict = {"v_fun": [v_generator], "epsilon": ["dual"], "second_order": [False], "cov": ["adapt"], "max_tree_depth": [8],"xhmc_delta":[xhmc_delta_list[i]], "metric_name": ["diag_e"], "dynamic": [True], "windowed": [False], "criterion": ["xhmc"]} else: input_dict = {"v_fun": [v_generator], "epsilon": ["dual"], "second_order": [False], "cov": ["adapt"], "max_tree_depth": [8], "metric_name": ["diag_e"], "dynamic": [True], "windowed": [False], "criterion": ["gnuts"]} ep_dual_metadata_argument = {"name": "epsilon", "target": 0.9, "gamma": 0.05, "t_0": 10, "kappa": 0.75, "obj_fun": "accept_rate", "par_type": "fast"} # adapt_cov_arguments = [adapt_cov_default_arguments(par_type="slow", dim=v_generator( precision_type="torch.DoubleTensor").get_model_dim())] dual_args_list = [ep_dual_metadata_argument] other_arguments = other_default_arguments() # tune_settings_dict = tuning_settings([],[],[],[]) tune_settings_dict = tuning_settings(dual_args_list, [], adapt_cov_arguments, other_arguments) tune_dict = tuneinput_class(input_dict).singleton_tune_dict() sampler1 = mcmc_sampler(tune_dict=tune_dict, mcmc_settings_dict=mcmc_meta, tune_settings_dict=tune_settings_dict) diagnostics_np = sampler1.np_diagnostics() samples_mixed = sampler1.get_samples(permuted=True) te = test_error(target_dataset=test_set,v_obj=v_generator("torch.DoubleTensor"),mcmc_samples=samples_mixed,type=type_problem) out = {"test_error":te,"diagnostics":diagnostics_np} out_list.append(out) te_store = numpy.zeros(len(out_list)) diagnostics_store = numpy.zeros(shape=[len(out_list)]+list(diagnostics_np.shape)) for i in range(len(out_list)): te_store[i] = out_list[i]["test_error"] diagnostics_store[i,...] = out_list[i]["diagnostics"] output_store = {"test_error":te_store,"diagnostics":diagnostics_store} save_name = "xhmc_v_gnuts_8x8mnist.npz" numpy.savez(save_name,**output_store) return(save_name)
def gradient_descent(number_of_iter, lr, v_obj, validation_set, validate_interval=10): # random initialization init_point = point(V=v_obj) init_point.flattened_tensor.normal_() init_point.load_flatten() theta = init_point.point_clone() store_v = [] best_validate_error = 10 explode_grad = False till_validate = validate_interval validate_continue = True for cur in range(number_of_iter): print("iter {}".format(cur)) if not validate_continue: break else: #print(cur) cur_v = v_obj.evaluate_scalar(theta) print("v val {}".format(cur_v)) #print(theta.flattened_tensor) grad, explode_grad = v_obj.dq(theta.flattened_tensor) if not explode_grad: theta.flattened_tensor -= lr * grad theta.load_flatten() store_v.append(v_obj.evaluate_scalar(theta)) if till_validate == 0: temp_mcmc_samples = numpy.zeros( (1, len(theta.flattened_tensor))) temp_mcmc_samples[0, :] = theta.flattened_tensor.numpy() validate_error, _, _ = test_error( target_dataset=validation_set, v_obj=v_obj, mcmc_samples=temp_mcmc_samples, type="classification") print("validate error {}".format(validate_error)) if validate_error > best_validate_error: validate_continue = False else: till_validate = validate_interval best_validate_error = validate_error else: till_validate -= 1 diff = abs(store_v[-1] - cur_v) if diff < 1e-6: break else: break return (theta, explode_grad)
def setup_xhmc_gnuts_experiment(xhmc_delta_list,train_set,test_set,save_name,seed=1): xhmc_delta_list.append(0) output_names = ["train_error", "test_error","train_error_sd","test_error_sd","min_ess","median_ess"] output_store = numpy.zeros((len(xhmc_delta_list), len(output_names))) diagnostics_store = numpy.zeros(shape=[len(xhmc_delta_list)]+[4,13]) prior_dict = {"name": "normal"} model_dict = {"num_units": 35} time_list = [] for i in range(len(xhmc_delta_list)): start_time = time.time() v_fun = V_fc_model_4 v_generator = wrap_V_class_with_input_data(class_constructor=v_fun, input_data=train_set,prior_dict=prior_dict, model_dict=model_dict) mcmc_meta = mcmc_sampler_settings_dict(mcmc_id=0, samples_per_chain=2000, num_chains=4, num_cpu=4, thin=1, tune_l_per_chain=900, warmup_per_chain=1000, is_float=False, isstore_to_disk=False, allow_restart=True,seed=seed+i+1) if i == len(xhmc_delta_list)-1: input_dict = {"v_fun": [v_generator], "epsilon": ["dual"], "second_order": [False], "cov": ["adapt"], "max_tree_depth": [8], "metric_name": ["diag_e"], "dynamic": [True], "windowed": [False], "criterion": ["gnuts"]} else: input_dict = {"v_fun": [v_generator], "epsilon": ["dual"], "second_order": [False], "cov": ["adapt"], "max_tree_depth": [8], "metric_name": ["diag_e"], "dynamic": [True], "windowed": [False], "criterion": ["xhmc"],"xhmc_delta":[xhmc_delta_list[i]]} ep_dual_metadata_argument = {"name": "epsilon", "target": 0.9, "gamma": 0.05, "t_0": 10, "kappa": 0.75, "obj_fun": "accept_rate", "par_type": "fast"} # # adapt_cov_arguments = [adapt_cov_default_arguments(par_type="slow", dim=v_generator( precision_type="torch.DoubleTensor").get_model_dim())] dual_args_list = [ep_dual_metadata_argument] other_arguments = other_default_arguments() tune_settings_dict = tuning_settings(dual_args_list, [], adapt_cov_arguments, other_arguments) tune_dict = tuneinput_class(input_dict).singleton_tune_dict() sampler1 = mcmc_sampler(tune_dict=tune_dict, mcmc_settings_dict=mcmc_meta, tune_settings_dict=tune_settings_dict) sampler1.start_sampling() total_time = time.time() - start_time np_diagnostics,feature_names = sampler1.np_diagnostics() mcmc_samples_mixed = sampler1.get_samples(permuted=True) te, predicted,te_sd = test_error(test_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=mcmc_samples_mixed, type="classification", memory_efficient=False) train_error,_,train_error_sd = test_error(train_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=mcmc_samples_mixed, type="classification", memory_efficient=False) output_store[i,0] = train_error output_store[i,1] = te output_store[i,2] = train_error_sd output_store[i,3] = te_sd diagnostics_store[i,:,:] = np_diagnostics output_store[i,4] = np_diagnostics[0,10] output_store[i,5] = np_diagnostics[0,11] time_list.append(total_time) to_store = {"diagnostics":diagnostics_store,"output":output_store,"diagnostics_names":feature_names, "output_names":output_names,"seed":seed,"xhmc_delta_list":xhmc_delta_list,"prior":prior_dict["name"], "num_units":model_dict["num_units"],"time_list":time_list} numpy.savez(save_name,**to_store) return()
input_data = { "input": input_data["input"][:5000, :], "target": input_data["target"][:5000] } #input_data = get_data_dict("mnist") prior_dict = {"name": "normal"} model_dict = {"num_units": 300} v_generator = wrap_V_class_with_input_data(class_constructor=V_fc_model_1, input_data=input_data, prior_dict=prior_dict, model_dict=model_dict) out, explode_grad = gradient_descent( number_of_iter=5000, lr=0.01, v_obj=v_generator(precision_type="torch.DoubleTensor")) #print(out.flattened_tensor) mcmc_samples = torch.zeros(1, len(out.flattened_tensor)) mcmc_samples[0, :] = out.flattened_tensor mcmc_samples = mcmc_samples.numpy() te, predicted = test_error( target_dataset=input_data, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=mcmc_samples, type="classification") print(te)
out = sampler1.get_diagnostics(permuted=False) print("divergent") processed_diag = process_diagnostics(out,name_list=["divergent"]) print(processed_diag.sum(axis=1)) #print(processed_diag.shape) #processed_energy = process_diagnostics(out,name_list=["prop_H"]) print(energy_diagnostics(diagnostics_obj=out)) mcmc_samples_mixed = sampler1.get_samples(permuted=True) #target_dataset = get_data_dict("8x8mnist") v_generator = wrap_V_class_with_input_data(class_constructor=V_fc_model_1,input_data=input_data,prior_dict=prior_dict,model_dict=model_dict) precision_type = "torch.DoubleTensor" te2,predicted2 = test_error(input_data,v_obj=v_generator(precision_type=precision_type),mcmc_samples=mcmc_samples_mixed,type="classification",memory_efficient=False) print(te2) mixed_mcmc_tensor = sampler1.get_samples(permuted=True) print(mixed_mcmc_tensor) mcmc_cov = numpy.cov(mixed_mcmc_tensor,rowvar=False) mcmc_sd_vec = numpy.sqrt(numpy.diagonal(mcmc_cov)) print("mcmc problem difficulty") print(max(mcmc_sd_vec)/min(mcmc_sd_vec)) # val = 2.25
def setup_gibbs_v_joint_experiment(num_units_list, train_set, test_set, num_samples, save_name, seed=1): output_names = [ "train_error", "test_error", "train_error_sd", "test_error_sd", "sigma_2_ess", "mean_sigma2", "median_sigma2", "min_ess", "median_ess" ] output_store = numpy.zeros((len(num_units_list), 3, len(output_names))) diagnostics_store = numpy.zeros(shape=[len(num_units_list), 3] + [4, 13]) time_store = numpy.zeros(shape=[len(num_units_list), 3]) for i in range(len(num_units_list)): for j in range(3): start_time = time.time() v_fun = V_fc_model_4 model_dict = {"num_units": num_units_list[i]} mcmc_meta = mcmc_sampler_settings_dict(mcmc_id=0, samples_per_chain=1000 + num_samples, num_chains=4, num_cpu=4, thin=1, tune_l_per_chain=900, warmup_per_chain=1000, is_float=False, isstore_to_disk=False, allow_restart=True, seed=seed + i + 1) if j == 2: v_generator = wrap_V_class_with_input_data( class_constructor=V_fc_gibbs_model_1, input_data=train_set, model_dict=model_dict) v_obj = v_generator(precision_type="torch.DoubleTensor", gibbs=True) metric_obj = metric(name="unit_e", V_instance=v_obj) Ham = Hamiltonian(v_obj, metric_obj) init_q_point = point(V=v_obj) init_hyperparam = torch.abs(torch.randn(1)) + 3 log_obj = log_class() dim = len(init_q_point.flattened_tensor) mcmc_samples_weight = torch.zeros(1, num_samples + 1000, dim) mcmc_samples_hyper = torch.zeros(1, num_samples + 1000, 1) for iter in range(num_samples + 1000): print("iter {}".format(iter)) outq, out_hyperparam = update_param_and_hyperparam_dynamic_one_step( init_q_point, init_hyperparam, Ham, 0.01, log_obj) init_q_point.flattened_tensor.copy_(outq.flattened_tensor) init_q_point.load_flatten() init_hyperparam = out_hyperparam mcmc_samples_weight[ 0, iter, :] = outq.flattened_tensor.clone() mcmc_samples_hyper[0, iter, 0] = out_hyperparam mcmc_samples_weight = mcmc_samples_weight[:, 1000:, :].numpy() mcmc_samples_hyper = mcmc_samples_hyper[:, 1000:, :].numpy() te, predicted, te_sd = test_error( test_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=mcmc_samples_weight[0, :, :], type="classification", memory_efficient=False) train_error, _, train_error_sd = test_error( train_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=mcmc_samples_weight[0, :, :], type="classification", memory_efficient=False) sigma2_diagnostics = diagnostics_stan(mcmc_samples_hyper) sigma2_ess = sigma2_diagnostics["ess"] posterior_mean_hidden_in_sigma2 = numpy.mean( mcmc_samples_hyper) posterior_median_hidden_in_sigma2 = numpy.median( mcmc_samples_hyper) weight_ess = diagnostics_stan(mcmc_samples_weight)["ess"] min_ess = min(sigma2_ess, min(weight_ess)) median_ess = numpy.median([sigma2_ess] + list(weight_ess)) output_store[i, j, 0] = train_error output_store[i, j, 1] = te output_store[i, j, 2] = train_error output_store[i, j, 3] = te_sd output_store[i, j, 4] = sigma2_ess output_store[i, j, 5] = posterior_mean_hidden_in_sigma2 output_store[i, j, 6] = posterior_median_hidden_in_sigma2 output_store[i, j, 7] = min_ess output_store[i, j, 8] = median_ess elif j == 0: prior_dict = {"name": "gaussian_inv_gamma_1"} v_generator = wrap_V_class_with_input_data( class_constructor=v_fun, input_data=train_set, prior_dict=prior_dict, model_dict=model_dict) elif j == 1: prior_dict = {"name": "gaussian_inv_gamma_2"} v_generator = wrap_V_class_with_input_data( class_constructor=v_fun, input_data=train_set, prior_dict=prior_dict, model_dict=model_dict) if j == 0 or j == 1: input_dict = { "v_fun": [v_generator], "epsilon": ["dual"], "second_order": [False], "max_tree_depth": [8], "metric_name": ["unit_e"], "dynamic": [True], "windowed": [False], "criterion": ["xhmc"], "xhmc_delta": [0.1] } ep_dual_metadata_argument = { "name": "epsilon", "target": 0.9, "gamma": 0.05, "t_0": 10, "kappa": 0.75, "obj_fun": "accept_rate", "par_type": "fast" } dual_args_list = [ep_dual_metadata_argument] other_arguments = other_default_arguments() tune_settings_dict = tuning_settings(dual_args_list, [], [], other_arguments) tune_dict = tuneinput_class(input_dict).singleton_tune_dict() sampler1 = mcmc_sampler(tune_dict=tune_dict, mcmc_settings_dict=mcmc_meta, tune_settings_dict=tune_settings_dict) sampler1.start_sampling() np_diagnostics, feature_names = sampler1.np_diagnostics() mcmc_samples_hidden_in = sampler1.get_samples_alt( prior_obj_name="hidden_in", permuted=False) samples = mcmc_samples_hidden_in["samples"] hidden_in_sigma2_indices = mcmc_samples_hidden_in[ "indices_dict"]["sigma2"] sigma2_diagnostics = diagnostics_stan( samples[:, :, hidden_in_sigma2_indices]) sigma2_ess = sigma2_diagnostics["ess"] posterior_mean_hidden_in_sigma2 = numpy.mean( samples[:, :, hidden_in_sigma2_indices].reshape( -1, len(hidden_in_sigma2_indices)), axis=0) posterior_median_hidden_in_sigma2 = numpy.median( samples[:, :, hidden_in_sigma2_indices].reshape( -1, len(hidden_in_sigma2_indices)), axis=0) mcmc_samples_mixed = sampler1.get_samples(permuted=True) te, predicted, te_sd = test_error( test_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=mcmc_samples_mixed, type="classification", memory_efficient=False) train_error, _, train_error_sd = test_error( train_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=mcmc_samples_mixed, type="classification", memory_efficient=False) output_store[i, j, 0] = train_error output_store[i, j, 1] = te output_store[i, j, 2] = train_error output_store[i, j, 3] = te_sd output_store[i, j, 4] = sigma2_ess output_store[i, j, 5] = posterior_mean_hidden_in_sigma2 output_store[i, j, 6] = posterior_median_hidden_in_sigma2 diagnostics_store[i, j, :, :] = np_diagnostics output_store[i, j, 7] = np_diagnostics[0, 10] output_store[i, j, 8] = np_diagnostics[0, 11] total_time = time.time() - start_time() time_store[i, j] = total_time to_store = { "diagnostics": diagnostics_store, "output": output_store, "diagnostics_names": feature_names, "output_names": output_names, "seed": seed, "num_units_list": num_units_list, "time_store": time_store } numpy.savez(save_name, **to_store) return ()
print("energy diagnostics") print(energy_diagnostics(diagnostics_obj=out)) mcmc_samples_mixed = sampler1.get_samples(permuted=True) target_dataset = get_data_dict("pima_indian") v_generator = wrap_V_class_with_input_data(class_constructor=V_fc_model_1, input_data=input_data, prior_dict=prior_dict, model_dict=model_dict) precision_type = "torch.DoubleTensor" te1, predicted1 = test_error(target_dataset, v_obj=v_generator(precision_type=precision_type), mcmc_samples=mcmc_samples_mixed, type="classification", memory_efficient=False) print(te1) mixed_mcmc_tensor = sampler1.get_samples(permuted=True) print(mixed_mcmc_tensor) mcmc_cov = numpy.cov(mixed_mcmc_tensor, rowvar=False) mcmc_sd_vec = numpy.sqrt(numpy.diagonal(mcmc_cov)) print("mcmc problem difficulty") print(max(mcmc_sd_vec) / min(mcmc_sd_vec)) # val = 3.66
# # v_obj = v_generator(precision_type="torch.DoubleTensor") # v_obj.flattened_tensor.copy_(torch.from_numpy(mcmc_samples_mixed[605,:])) # v_obj.load_flattened_tensor_to_param() # print(v_obj.forward()) # # #print((v_obj.flattened_tensor*v_obj.flattened_tensor).sum()) # out = v_obj.predict(inputX=input_data["input"]) # prediction = torch.max(out,1)[1] # #print(out.shape) # #print(out) # print(prediction[60:80].numpy()) # print(input_data["target"][60:80]) te2, predicted2 = test_error(test_set, v_obj=v_generator(precision_type=precision_type), mcmc_samples=mcmc_samples_mixed, type="regression", memory_efficient=False) print(te2) mixed_mcmc_tensor = sampler1.get_samples(permuted=True) print(mixed_mcmc_tensor) mcmc_cov = numpy.cov(mixed_mcmc_tensor, rowvar=False) mcmc_sd_vec = numpy.sqrt(numpy.diagonal(mcmc_cov)) print("mcmc problem difficulty") print(max(mcmc_sd_vec) / min(mcmc_sd_vec)) # val = 1.1
print("num hit max tree depth after warmup") processed_diag = process_diagnostics(out, name_list=["hit_max_tree_depth"]) print(processed_diag.sum(axis=1)) print("average number of leapfrog steps after warmup") processed_diag = process_diagnostics(out, name_list=["num_transitions"]) print(processed_diag.mean(axis=1)) #processed_energy = process_diagnostics(out,name_list=["prop_H"]) print("energy diagnostics") print(energy_diagnostics(diagnostics_obj=out)) mixed_mcmc_tensor = sampler1.get_samples(permuted=True) print(mixed_mcmc_tensor) mcmc_cov = numpy.cov(mixed_mcmc_tensor, rowvar=False) mcmc_sd_vec = numpy.sqrt(numpy.diagonal(mcmc_cov)) print("mcmc problem difficulty") print(max(mcmc_sd_vec) / min(mcmc_sd_vec)) # val = 1.82 test_mcmc_samples = sampler1.get_samples(permuted=True) te2, predicted2 = test_error(input_data, v_obj=V_fun(precision_type="torch.DoubleTensor"), mcmc_samples=test_mcmc_samples, type="classification", memory_efficient=False) print(te2)
def setup_sghmc_experiment(ep_list,L_list,eta_list,train_set,test_set,save_name,seed=1): output_names = ["train_error", "test_error","train_error_sd","test_error_sd"] output_store = numpy.zeros((len(ep_list),len(L_list),len(eta_list), len(output_names))) diagnostics_store = numpy.zeros(shape=[len(ep_list),len(L_list),len(eta_list)]+[4,13]) model_dict = {"num_units":35} prior_dict = {"name":"normal"} time_store = numpy.zeros(shape=[len(ep_list),len(L_list),len(eta_list)]) for i in range(len(ep_list)): for j in range(len(L_list)): for k in range(len(eta_list)): start_time = time.time() v_generator = wrap_V_class_with_input_data(class_constructor=V_fc_model_1, input_data=train_set, prior_dict=prior_dict, model_dict=model_dict) v_obj = v_generator(precision_type="torch.DoubleTensor") metric_obj = metric(name="unit_e", V_instance=v_obj) Ham = Hamiltonian(V=v_obj, metric=metric_obj) full_data = train_set init_q_point = point(V=v_obj) store,explode_grad = sghmc_sampler(init_q_point=init_q_point, epsilon=ep_list[i], L=L_list[j], Ham=Ham, alpha=0.01, eta=eta_list[k], betahat=0, full_data=full_data, num_samples=2000, thin=0, burn_in=1000, batch_size=25) total_time = time.time() - start_time if not explode_grad: v_generator = wrap_V_class_with_input_data(class_constructor=V_fc_model_1, input_data=train_set, prior_dict=prior_dict, model_dict=model_dict) test_mcmc_samples = store.numpy() te1, predicted1,te_sd = test_error(test_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=test_mcmc_samples, type="classification", memory_efficient=False) train_error, predicted1, train_error_sd = test_error(train_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=test_mcmc_samples, type="classification", memory_efficient=False) else: train_error = 2 te1 = 2 train_error_sd = 2 te_sd = 2 output_store[i,j,k,0] = train_error output_store[i,j,k,1] = te1 output_store[i,j,k,2] = train_error_sd output_store[i,j,k,3] = te_sd time_store[i,j,k] = total_time to_store = {"diagnostics":diagnostics_store,"output":output_store,"output_names":output_names,"seed":seed, "ep_list":ep_list,"L_list":L_list,"eta_list":eta_list,"num_units":model_dict["num_units"], "prior":prior_dict["name"],"total_store":time_store} numpy.savez(save_name,**to_store) return()
print("debug") #print((v_obj.flattened_tensor*v_obj.flattened_tensor).sum()) v_obj = v_generator(precision_type="torch.DoubleTensor") v_obj.flattened_tensor.copy_(torch.from_numpy(mcmc_samples_mixed[605,:])) v_obj.load_flattened_tensor_to_param() print(v_obj.forward()) #print((v_obj.flattened_tensor*v_obj.flattened_tensor).sum()) out = v_obj.predict(inputX=input_data["input"]) prediction = torch.max(out,1)[1] #print(out.shape) #print(out) print(prediction[60:80].numpy()) print(input_data["target"][60:80]) te2,predicted2 = test_error(test_set,v_obj=v_generator(precision_type=precision_type),mcmc_samples=test_mcmc_samples,type="classification",memory_efficient=False) print(te2) mixed_mcmc_tensor = sampler1.get_samples(permuted=True) print(mixed_mcmc_tensor) mcmc_cov = numpy.cov(mixed_mcmc_tensor,rowvar=False) mcmc_sd_vec = numpy.sqrt(numpy.diagonal(mcmc_cov)) print("mcmc problem difficulty") print(max(mcmc_sd_vec)/min(mcmc_sd_vec)) # val = 1.1
def setup_ensemble_experiment(num_unit_list, list_num_ensemble_pts, train_set, validate_set, test_set, save_name, seed=1): output_names = [ "ensemble_train_error", "ensemble_te", "ensemble_train_error_sd", "ensemble_te_sd" ] output_store = numpy.zeros( (len(num_unit_list), len(list_num_ensemble_pts), len(output_names))) diagnostics_store = numpy.zeros(shape=[len(num_unit_list)] + [4, 13]) numpy.random.seed(seed) torch.manual_seed(seed) diver_store = numpy.zeros((len(num_unit_list), len(list_num_ensemble_pts))) time_store = numpy.zeros((len(num_unit_list), len(list_num_ensemble_pts))) for i in range(len(num_unit_list)): model_dict = {"num_units": num_unit_list[i]} for k in range(len(list_num_ensemble_pts)): start_time = time.time() prior_dict = {"name": "normal"} num_ensemble_pts = list_num_ensemble_pts[k] num_diver = 0 ensemble_list = [] v_generator = wrap_V_class_with_input_data( class_constructor=V_fc_model_4, prior_dict=prior_dict, input_data=train_set, model_dict=model_dict) for j in range(num_ensemble_pts): out, explode_grad = gradient_descent( number_of_iter=2000, lr=0.001, validation_set=validate_set, v_obj=v_generator(precision_type="torch.DoubleTensor")) if explode_grad: num_diver += 1 else: ensemble_list.append(out.point_clone()) ensemble_pts = numpy.zeros( (len(ensemble_list), len(ensemble_list[0].flattened_tensor))) for z in range(len(ensemble_list)): ensemble_pts[z, :] = ensemble_list[z].flattened_tensor.numpy() ensemble_te, predicted, ensemble_te_sd = test_error( test_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=ensemble_pts, type="classification", memory_efficient=False) ensemble_train_error, _, ensemble_train_error_sd = test_error( train_set, v_obj=v_generator(precision_type="torch.DoubleTensor"), mcmc_samples=ensemble_pts, type="classification", memory_efficient=False) total_time = time.time() - start_time output_store[i, k, 0] = ensemble_train_error output_store[i, k, 1] = ensemble_te output_store[i, k, 2] = ensemble_train_error_sd output_store[i, k, 3] = ensemble_te_sd diver_store[i, k] = num_diver time_store[i, k] = total_time #print(output_store) to_store = { "output": output_store, "output_names": output_names, "num_unit_list": num_unit_list, "seed": seed, "list_num_ensemble_pts": list_num_ensemble_pts, "num_div": diver_store, "time_store": time_store } numpy.savez(save_name, **to_store) return ()
#print(store_samples) sigma2_tensor = numpy.zeros( (1, store_samples.shape[0], store_samples.shape[1])) sigma2_tensor[0, :, :] = numpy.exp(store_samples) print(diagnostics_stan(mcmc_samples_tensor=sigma2_tensor)) print("sigma2 diagnostics gibbs") print(numpy.mean(mcmc_samples_hyper)) print(numpy.var(mcmc_samples_hyper)) sigma2_tensor = numpy.zeros((1, len(mcmc_samples_hyper), 1)) sigma2_tensor[0, :, 0] = mcmc_samples_hyper print(diagnostics_stan(mcmc_samples_tensor=sigma2_tensor)) print("weight diagnostics gibbs") print(numpy.mean(mcmc_samples_weight, axis=0)) weight_tensor = numpy.zeros( (1, mcmc_samples_weight.shape[0], mcmc_samples_weight.shape[1])) weight_tensor[0, :, :] = mcmc_samples_weight print(diagnostics_stan(mcmc_samples_tensor=weight_tensor)) exit() te1, predicted1 = test_error(data_dict, v_obj=v_obj, mcmc_samples=mcmc_samples, type="classification", memory_efficient=False) print(te1) #print(out.flattened_tensor)
from input_data.convert_data_to_dict import get_data_dict from post_processing.test_error import map_prediction, test_error from distributions.linear_regressions.linear_regression import V_linear_regression import pickle with open("debug_test_error_mcmc_regression.pkl", 'rb') as f: mcmc_samples = pickle.load(f) #print(mcmc_samples.shape) target_dataset = get_data_dict("boston") te1, predicted1 = test_error(target_dataset, v_obj=V_linear_regression(), mcmc_samples=mcmc_samples, type="regression", memory_efficient=False) te2, predicted2 = test_error(target_dataset, v_obj=V_linear_regression(), mcmc_samples=mcmc_samples, type="regression", memory_efficient=True) print(te1) print(te2) #print(sum(predicted1!=predicted2))