def _make_valid_distributions(metadata): for prediction in metadata['predictions']: prediction["systole_average"] = postprocess.make_monotone_distribution( prediction["systole_average"]) postprocess.test_if_valid_distribution(prediction["systole_average"]) prediction[ "diastole_average"] = postprocess.make_monotone_distribution( prediction["diastole_average"]) postprocess.test_if_valid_distribution(prediction["diastole_average"])
def calculate_tta_average(predictions, average_method, average_systole, average_diastole): already_printed = False for prediction in predictions: if prediction["systole"].size>0 and prediction["diastole"].size>0: assert np.isfinite(prediction["systole"][None,:,:]).all() assert np.isfinite(prediction["diastole"][None,:,:]).all() prediction["systole_average"] = average_method(prediction["systole"][None,:,:], average=average_systole) prediction["diastole_average"] = average_method(prediction["diastole"][None,:,:], average=average_diastole) try: test_if_valid_distribution(prediction["systole_average"]) test_if_valid_distribution(prediction["diastole_average"]) except: if not already_printed: #print "WARNING: These distributions are not distributions" already_printed = True prediction["systole_average"] = make_monotone_distribution(prediction["systole_average"]) prediction["diastole_average"] = make_monotone_distribution(prediction["diastole_average"]) try: test_if_valid_distribution(prediction["systole_average"]) test_if_valid_distribution(prediction["diastole_average"]) except: prediction["systole_average"] = None prediction["diastole_average"] = None else: # average distributions get zero weight later on #prediction["systole_average"] = average_systole #prediction["diastole_average"] = average_diastole prediction["systole_average"] = None prediction["diastole_average"] = None
def _make_valid_distributions(metadata): for prediction in metadata['predictions']: prediction["systole_average"] = postprocess.make_monotone_distribution(prediction["systole_average"]) postprocess.test_if_valid_distribution(prediction["systole_average"]) prediction["diastole_average"] = postprocess.make_monotone_distribution(prediction["diastole_average"]) postprocess.test_if_valid_distribution(prediction["diastole_average"])
def predict_slice_model(expid, outfile, mfile=None): metadata_path = MODEL_PATH + "%s.pkl" % (expid if not mfile else mfile) if theano.config.optimizer != "fast_run": print "WARNING: not running in fast mode!" print "Build model" interface_layers = config().build_model() output_layers = interface_layers["outputs"] input_layers = interface_layers["inputs"] top_layer = lasagne.layers.MergeLayer( incomings=output_layers.values() ) _check_slicemodel(input_layers) # Print the architecture _print_architecture(top_layer) xs_shared = { key: lasagne.utils.shared_empty(dim=len(l_in.output_shape), dtype='float32') for (key, l_in) in input_layers.iteritems() } idx = T.lscalar('idx') givens = dict() for key in input_layers.keys(): if key=="sunny": givens[input_layers[key].input_var] = xs_shared[key][idx*config().sunny_batch_size:(idx+1)*config().sunny_batch_size] else: givens[input_layers[key].input_var] = xs_shared[key][idx*config().batch_size:(idx+1)*config().batch_size] network_outputs = [ lasagne.layers.helper.get_output(network_output_layer, deterministic=True) for network_output_layer in output_layers.values() ] iter_test = theano.function([idx], network_outputs + theano_printer.get_the_stuff_to_print(), givens=givens, on_unused_input="ignore", # mode=NanGuardMode(nan_is_error=True, inf_is_error=True, big_is_error=True) ) print "Load model parameters for resuming" resume_metadata = np.load(metadata_path) lasagne.layers.set_all_param_values(top_layer, resume_metadata['param_values']) num_batches_chunk = config().batches_per_chunk num_batches = get_number_of_test_batches() num_chunks = int(np.ceil(num_batches / float(config().batches_per_chunk))) chunks_train_idcs = range(1, num_chunks+1) create_test_gen = partial(config().create_test_gen, required_input_keys = xs_shared.keys(), required_output_keys = ["patients", "slices"], ) print "Generate predictions with this model" start_time = time.time() prev_time = start_time predictions = [{"patient": i+1, "slices": { slice_id: { "systole": np.zeros((0,600)), "diastole": np.zeros((0,600)) } for slice_id in data_loader.get_slice_ids_for_patient(i+1) } } for i in xrange(NUM_PATIENTS)] # Loop over data and generate predictions for e, test_data in izip(itertools.count(start=1), buffering.buffered_gen_threaded(create_test_gen())): print " load testing data onto GPU" for key in xs_shared: xs_shared[key].set_value(test_data["input"][key]) patient_ids = test_data["output"]["patients"] slice_ids = test_data["output"]["slices"] print " patients:", " ".join(map(str, patient_ids)) print " chunk %d/%d" % (e, num_chunks) for b in xrange(num_batches_chunk): iter_result = iter_test(b) network_outputs = tuple(iter_result[:len(output_layers)]) network_outputs_dict = {output_layers.keys()[i]: network_outputs[i] for i in xrange(len(output_layers))} kaggle_systoles, kaggle_diastoles = config().postprocess(network_outputs_dict) kaggle_systoles, kaggle_diastoles = kaggle_systoles.astype('float64'), kaggle_diastoles.astype('float64') for idx, (patient_id, slice_id) in enumerate( zip(patient_ids[b*config().batch_size:(b+1)*config().batch_size], slice_ids[b*config().batch_size:(b+1)*config().batch_size])): if patient_id != 0: index = patient_id-1 patient_data = predictions[index] assert patient_id==patient_data["patient"] patient_slice_data = patient_data["slices"][slice_id] patient_slice_data["systole"] = np.concatenate((patient_slice_data["systole"], kaggle_systoles[idx:idx+1,:]),axis=0) patient_slice_data["diastole"] = np.concatenate((patient_slice_data["diastole"], kaggle_diastoles[idx:idx+1,:]),axis=0) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * (float(num_chunks - (e + 1)) / float(e + 1 - chunks_train_idcs[0])) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print " %s since start (%.2f s)" % (utils.hms(time_since_start), time_since_prev) print " estimated %s to go (ETA: %s)" % (utils.hms(est_time_left), eta_str) print # Average predictions already_printed = False for prediction in predictions: for prediction_slice_id in prediction["slices"]: prediction_slice = prediction["slices"][prediction_slice_id] if prediction_slice["systole"].size>0 and prediction_slice["diastole"].size>0: average_method = getattr(config(), 'tta_average_method', partial(np.mean, axis=0)) prediction_slice["systole_average"] = average_method(prediction_slice["systole"]) prediction_slice["diastole_average"] = average_method(prediction_slice["diastole"]) try: test_if_valid_distribution(prediction_slice["systole_average"]) test_if_valid_distribution(prediction_slice["diastole_average"]) except: if not already_printed: print "WARNING: These distributions are not distributions" already_printed = True prediction_slice["systole_average"] = make_monotone_distribution(prediction_slice["systole_average"]) prediction_slice["diastole_average"] = make_monotone_distribution(prediction_slice["diastole_average"]) print "Calculating training and validation set scores for reference" # Add CRPS scores to the predictions # Iterate over train and validation sets for patient_ids, set_name in [(validation_patients_indices, "validation"), (train_patients_indices, "train")]: # Iterate over patients in the set for patient in patient_ids: prediction = predictions[patient-1] # Iterate over the slices for slice_id in prediction["slices"]: prediction_slice = prediction["slices"][slice_id] if "systole_average" in prediction_slice: assert patient == regular_labels[patient-1, 0] error_sys = CRSP(prediction_slice["systole_average"], regular_labels[patient-1, 1]) prediction_slice["systole_CRPS"] = error_sys prediction_slice["target_systole"] = regular_labels[patient-1, 1] error_dia = CRSP(prediction_slice["diastole_average"], regular_labels[patient-1, 2]) prediction_slice["diastole_CRPS"] = error_dia prediction_slice["target_diastole"] = regular_labels[patient-1, 2] prediction_slice["CRPS"] = 0.5 * error_sys + 0.5 * error_dia print "dumping prediction file to %s" % outfile with open(outfile, 'w') as f: pickle.dump({ 'metadata_path': metadata_path, 'configuration_file': config().__name__, 'git_revision_hash': utils.get_git_revision_hash(), 'experiment_id': expid, 'time_since_start': time_since_start, 'param_values': lasagne.layers.get_all_param_values(top_layer), 'predictions_per_slice': predictions, }, f, pickle.HIGHEST_PROTOCOL) print "prediction file dumped" return
def predict_model(expid, mfile=None): metadata_path = MODEL_PATH + "%s.pkl" % (expid if not mfile else mfile) prediction_path = INTERMEDIATE_PREDICTIONS_PATH + "%s.pkl" % expid submission_path = SUBMISSION_PATH + "%s.csv" % expid if theano.config.optimizer != "fast_run": print("WARNING: not running in fast mode!") print("Using") print(" %s" % metadata_path) print("To generate") print(" %s" % prediction_path) print(" %s" % submission_path) print("Build model") interface_layers = config().build_model() output_layers = interface_layers["outputs"] input_layers = interface_layers["inputs"] top_layer = lasagne.layers.MergeLayer( incomings=list(output_layers.values())) all_layers = lasagne.layers.get_all_layers(top_layer) num_params = lasagne.layers.count_params(top_layer) print(" number of parameters: %d" % num_params) print(string.ljust(" layer output shapes:", 36), end=' ') print(string.ljust("#params:", 10), end=' ') print("output shape:") for layer in all_layers[:-1]: name = string.ljust(layer.__class__.__name__, 32) num_param = sum( [np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print(" %s %s %s" % (name, num_param, layer.output_shape)) xs_shared = { key: lasagne.utils.shared_empty(dim=len(l_in.output_shape), dtype='float32') for (key, l_in) in input_layers.items() } idx = T.lscalar('idx') givens = dict() for key in list(input_layers.keys()): if key == "sunny": givens[input_layers[key].input_var] = xs_shared[key][idx * config( ).sunny_batch_size:(idx + 1) * config().sunny_batch_size] else: givens[input_layers[key]. input_var] = xs_shared[key][idx * config().batch_size:(idx + 1) * config().batch_size] network_outputs = [ lasagne.layers.helper.get_output(network_output_layer, deterministic=True) for network_output_layer in list(output_layers.values()) ] iter_test = theano.function( [idx], network_outputs + theano_printer.get_the_stuff_to_print(), givens=givens, on_unused_input="ignore", # mode=NanGuardMode(nan_is_error=True, inf_is_error=True, big_is_error=True) ) print("Load model parameters for resuming") resume_metadata = np.load(metadata_path) lasagne.layers.set_all_param_values(top_layer, resume_metadata['param_values']) num_batches_chunk = config().batches_per_chunk num_batches = get_number_of_test_batches() num_chunks = int(np.ceil(num_batches / float(config().batches_per_chunk))) chunks_train_idcs = list(range(1, num_chunks + 1)) data_loader.filter_patient_folders() create_test_gen = partial( config().create_test_gen, required_input_keys=list(xs_shared.keys()), required_output_keys=[ "patients", "classification_correction_function" ], ) print("Generate predictions with this model") start_time = time.time() prev_time = start_time predictions = [{ "patient": i + 1, "systole": np.zeros((0, 600)), "diastole": np.zeros((0, 600)) } for i in range(NUM_PATIENTS)] for e, test_data in zip(itertools.count(start=1), buffering.buffered_gen_threaded( create_test_gen())): print(" load testing data onto GPU") for key in xs_shared: xs_shared[key].set_value(test_data["input"][key]) patient_ids = test_data["output"]["patients"] classification_correction = test_data["output"][ "classification_correction_function"] print(" patients:", " ".join(map(str, patient_ids))) print(" chunk %d/%d" % (e, num_chunks)) for b in range(num_batches_chunk): iter_result = iter_test(b) network_outputs = tuple(iter_result[:len(output_layers)]) network_outputs_dict = { list(output_layers.keys())[i]: network_outputs[i] for i in range(len(output_layers)) } kaggle_systoles, kaggle_diastoles = config().postprocess( network_outputs_dict) kaggle_systoles, kaggle_diastoles = kaggle_systoles.astype( 'float64'), kaggle_diastoles.astype('float64') for idx, patient_id in enumerate( patient_ids[b * config().batch_size:(b + 1) * config().batch_size]): if patient_id != 0: index = patient_id - 1 patient_data = predictions[index] assert patient_id == patient_data["patient"] kaggle_systole = kaggle_systoles[idx:idx + 1, :] kaggle_diastole = kaggle_diastoles[idx:idx + 1, :] assert np.isfinite(kaggle_systole).all() and np.isfinite( kaggle_systole).all() kaggle_systole = classification_correction[ b * config().batch_size + idx](kaggle_systole) kaggle_diastole = classification_correction[ b * config().batch_size + idx](kaggle_diastole) assert np.isfinite(kaggle_systole).all() and np.isfinite( kaggle_systole).all() patient_data["systole"] = np.concatenate( (patient_data["systole"], kaggle_systole), axis=0) patient_data["diastole"] = np.concatenate( (patient_data["diastole"], kaggle_diastole), axis=0) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * ( float(num_chunks - (e + 1)) / float(e + 1 - chunks_train_idcs[0])) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print(" %s since start (%.2f s)" % (utils.hms(time_since_start), time_since_prev)) print(" estimated %s to go (ETA: %s)" % (utils.hms(est_time_left), eta_str)) print() already_printed = False for prediction in predictions: if prediction["systole"].size > 0 and prediction["diastole"].size > 0: average_method = getattr(config(), 'tta_average_method', partial(np.mean, axis=0)) prediction["systole_average"] = average_method( prediction["systole"]) prediction["diastole_average"] = average_method( prediction["diastole"]) try: test_if_valid_distribution(prediction["systole_average"]) test_if_valid_distribution(prediction["diastole_average"]) except: if not already_printed: print("WARNING: These distributions are not distributions") already_printed = True prediction["systole_average"] = make_monotone_distribution( prediction["systole_average"]) prediction["diastole_average"] = make_monotone_distribution( prediction["diastole_average"]) test_if_valid_distribution(prediction["systole_average"]) test_if_valid_distribution(prediction["diastole_average"]) print("Calculating training and validation set scores for reference") validation_dict = {} for patient_ids, set_name in [(validation_patients_indices, "validation"), (train_patients_indices, "train")]: errors = [] for patient in patient_ids: prediction = predictions[patient - 1] if "systole_average" in prediction: assert patient == regular_labels[patient - 1, 0] error = CRSP(prediction["systole_average"], regular_labels[patient - 1, 1]) errors.append(error) error = CRSP(prediction["diastole_average"], regular_labels[patient - 1, 2]) errors.append(error) if len(errors) > 0: errors = np.array(errors) estimated_CRSP = np.mean(errors) print(" %s kaggle loss: %f" % (string.rjust(set_name, 12), estimated_CRSP)) validation_dict[set_name] = estimated_CRSP else: print(" %s kaggle loss: not calculated" % (string.rjust(set_name, 12))) print("dumping prediction file to %s" % prediction_path) with open(prediction_path, 'w') as f: pickle.dump( { 'metadata_path': metadata_path, 'prediction_path': prediction_path, 'submission_path': submission_path, 'configuration_file': config().__name__, 'git_revision_hash': utils.get_git_revision_hash(), 'experiment_id': expid, 'time_since_start': time_since_start, 'param_values': lasagne.layers.get_all_param_values(top_layer), 'predictions': predictions, 'validation_errors': validation_dict, }, f, pickle.HIGHEST_PROTOCOL) print("prediction file dumped") print("dumping submission file to %s" % submission_path) with open(submission_path, 'w') as csvfile: csvwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) csvwriter.writerow(['Id'] + ['P%d' % i for i in range(600)]) for prediction in predictions: # the submission only has patients 501 to 700 if prediction["patient"] in data_loader.test_patients_indices: if "diastole_average" not in prediction or "systole_average" not in prediction: raise Exception("Not all test-set patients were predicted") csvwriter.writerow(["%d_Diastole" % prediction["patient"]] + [ "%.18f" % p for p in prediction["diastole_average"].flatten() ]) csvwriter.writerow(["%d_Systole" % prediction["patient"]] + [ "%.18f" % p for p in prediction["systole_average"].flatten() ]) print("submission file dumped") return
def generate_final_predictions( final_predictions, prediction_tag, expert_predictions_matrix, masked_expert_predictions_matrix, test_expert_predictions_matrix, test_masked_expert_predictions_matrix, optimal_params, average_distribution, valid_labels, expert_pkl_files, expert_weight, disagreement_cutoff): cache_dict = dict() for final_prediction in final_predictions: patient_id = final_prediction['patient'] if patient_id in train_patients_indices: continue print(" final prediction of patient %d" % patient_id) reoptimized = False # get me the data for this patient # (NUM_EXPERTS, 600) if patient_id in validation_patients_indices: idx = validation_patients_indices.index(patient_id) prediction_matrix = expert_predictions_matrix[:, idx, :] mask_matrix = masked_expert_predictions_matrix[:, idx] elif patient_id in test_patients_indices: idx = test_patients_indices.index(patient_id) prediction_matrix = test_expert_predictions_matrix[:, idx, :] mask_matrix = test_masked_expert_predictions_matrix[:, idx] else: raise "This patient is neither train, validation or test?" # Is there an expert in the set, which did not predict this patient? # if so, re-optimize our weights on the validation set! # so, if a model is unavailble, but should be available, re-optimize! if np.logical_and(np.logical_not(mask_matrix), (expert_weight!=0.0)).any(): if hash_mask(mask_matrix) in cache_dict: (optimal_params_for_this_patient, expert_weight) = cache_dict[hash_mask(mask_matrix)] else: expert_weight, _, optimal_params_for_this_patient = get_optimal_ensemble_weights_for_these_experts( expert_mask=mask_matrix, prediction_matrix=expert_predictions_matrix, mask_matrix=masked_expert_predictions_matrix, labels=valid_labels, average_distribution=average_distribution, ) cache_dict[hash_mask(mask_matrix)] = (optimal_params_for_this_patient, expert_weight) reoptimized = True else: optimal_params_for_this_patient = optimal_params while True: # do-while: break condition at the end last_mask_matrix = mask_matrix final_prediction[prediction_tag] = optimize_expert_weights( expert_predictions=prediction_matrix[:,None,:], mask_matrix=mask_matrix[:,None], average_distribution=average_distribution, do_optimization=False, optimal_params=optimal_params_for_this_patient, ) ## find the disagreement between models # and remove the ones who disagree too much with the average disagreement = find_disagreement( expert_predictions=prediction_matrix, mask_matrix=mask_matrix, ground_truth=final_prediction[prediction_tag] ) mask_matrix = (disagreement<disagreement_cutoff) ## RETRAIN THESE ENSEMBLE WEIGHTS ON THE VALIDATION SET IF NEEDED! if ((last_mask_matrix!=mask_matrix).any() and np.sum(mask_matrix)!=0): if hash_mask(mask_matrix) in cache_dict: (optimal_params_for_this_patient, expert_weight) = cache_dict[hash_mask(mask_matrix)] else: expert_weight, _, optimal_params_for_this_patient = get_optimal_ensemble_weights_for_these_experts( expert_mask=mask_matrix, prediction_matrix=expert_predictions_matrix, mask_matrix=masked_expert_predictions_matrix, labels=valid_labels, average_distribution=average_distribution, ) cache_dict[hash_mask(mask_matrix)] = (optimal_params_for_this_patient, expert_weight) reoptimized = True continue else: break try: test_if_valid_distribution(final_prediction[prediction_tag]) except: final_prediction[prediction_tag] = make_monotone_distribution(final_prediction[prediction_tag]) test_if_valid_distribution(final_prediction[prediction_tag]) if reoptimized: print(" Weight: Name:") for expert_name, weight in zip(expert_pkl_files, expert_weight): if weight>0.: print(string.rjust("%.3f%%" % (100*weight), 12), end=' ') print(expert_name.split('/')[-1])
def predict_model(expid, mfile=None): metadata_path = MODEL_PATH + "%s.pkl" % (expid if not mfile else mfile) prediction_path = INTERMEDIATE_PREDICTIONS_PATH + "%s.pkl" % expid submission_path = SUBMISSION_PATH + "%s.csv" % expid if theano.config.optimizer != "fast_run": print "WARNING: not running in fast mode!" print "Using" print " %s" % metadata_path print "To generate" print " %s" % prediction_path print " %s" % submission_path print "Build model" interface_layers = config().build_model() output_layers = interface_layers["outputs"] input_layers = interface_layers["inputs"] top_layer = lasagne.layers.MergeLayer( incomings=output_layers.values() ) all_layers = lasagne.layers.get_all_layers(top_layer) num_params = lasagne.layers.count_params(top_layer) print " number of parameters: %d" % num_params print string.ljust(" layer output shapes:",36), print string.ljust("#params:",10), print "output shape:" for layer in all_layers[:-1]: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print " %s %s %s" % (name, num_param, layer.output_shape) xs_shared = { key: lasagne.utils.shared_empty(dim=len(l_in.output_shape), dtype='float32') for (key, l_in) in input_layers.iteritems() } idx = T.lscalar('idx') givens = dict() for key in input_layers.keys(): if key=="sunny": givens[input_layers[key].input_var] = xs_shared[key][idx*config().sunny_batch_size:(idx+1)*config().sunny_batch_size] else: givens[input_layers[key].input_var] = xs_shared[key][idx*config().batch_size:(idx+1)*config().batch_size] network_outputs = [ lasagne.layers.helper.get_output(network_output_layer, deterministic=True) for network_output_layer in output_layers.values() ] iter_test = theano.function([idx], network_outputs + theano_printer.get_the_stuff_to_print(), givens=givens, on_unused_input="ignore", # mode=NanGuardMode(nan_is_error=True, inf_is_error=True, big_is_error=True) ) print "Load model parameters for resuming" resume_metadata = np.load(metadata_path) lasagne.layers.set_all_param_values(top_layer, resume_metadata['param_values']) num_batches_chunk = config().batches_per_chunk num_batches = get_number_of_test_batches() num_chunks = int(np.ceil(num_batches / float(config().batches_per_chunk))) chunks_train_idcs = range(1, num_chunks+1) data_loader.filter_patient_folders() create_test_gen = partial(config().create_test_gen, required_input_keys = xs_shared.keys(), required_output_keys = ["patients", "classification_correction_function"], ) print "Generate predictions with this model" start_time = time.time() prev_time = start_time predictions = [{"patient": i+1, "systole": np.zeros((0,600)), "diastole": np.zeros((0,600)) } for i in xrange(NUM_PATIENTS)] for e, test_data in izip(itertools.count(start=1), buffering.buffered_gen_threaded(create_test_gen())): print " load testing data onto GPU" for key in xs_shared: xs_shared[key].set_value(test_data["input"][key]) patient_ids = test_data["output"]["patients"] classification_correction = test_data["output"]["classification_correction_function"] print " patients:", " ".join(map(str, patient_ids)) print " chunk %d/%d" % (e, num_chunks) for b in xrange(num_batches_chunk): iter_result = iter_test(b) network_outputs = tuple(iter_result[:len(output_layers)]) network_outputs_dict = {output_layers.keys()[i]: network_outputs[i] for i in xrange(len(output_layers))} kaggle_systoles, kaggle_diastoles = config().postprocess(network_outputs_dict) kaggle_systoles, kaggle_diastoles = kaggle_systoles.astype('float64'), kaggle_diastoles.astype('float64') for idx, patient_id in enumerate(patient_ids[b*config().batch_size:(b+1)*config().batch_size]): if patient_id != 0: index = patient_id-1 patient_data = predictions[index] assert patient_id==patient_data["patient"] kaggle_systole = kaggle_systoles[idx:idx+1,:] kaggle_diastole = kaggle_diastoles[idx:idx+1,:] assert np.isfinite(kaggle_systole).all() and np.isfinite(kaggle_systole).all() kaggle_systole = classification_correction[b*config().batch_size + idx](kaggle_systole) kaggle_diastole = classification_correction[b*config().batch_size + idx](kaggle_diastole) assert np.isfinite(kaggle_systole).all() and np.isfinite(kaggle_systole).all() patient_data["systole"] = np.concatenate((patient_data["systole"], kaggle_systole ),axis=0) patient_data["diastole"] = np.concatenate((patient_data["diastole"], kaggle_diastole ),axis=0) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * (float(num_chunks - (e + 1)) / float(e + 1 - chunks_train_idcs[0])) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print " %s since start (%.2f s)" % (utils.hms(time_since_start), time_since_prev) print " estimated %s to go (ETA: %s)" % (utils.hms(est_time_left), eta_str) print already_printed = False for prediction in predictions: if prediction["systole"].size>0 and prediction["diastole"].size>0: average_method = getattr(config(), 'tta_average_method', partial(np.mean, axis=0)) prediction["systole_average"] = average_method(prediction["systole"]) prediction["diastole_average"] = average_method(prediction["diastole"]) try: test_if_valid_distribution(prediction["systole_average"]) test_if_valid_distribution(prediction["diastole_average"]) except: if not already_printed: print "WARNING: These distributions are not distributions" already_printed = True prediction["systole_average"] = make_monotone_distribution(prediction["systole_average"]) prediction["diastole_average"] = make_monotone_distribution(prediction["diastole_average"]) test_if_valid_distribution(prediction["systole_average"]) test_if_valid_distribution(prediction["diastole_average"]) print "Calculating training and validation set scores for reference" validation_dict = {} for patient_ids, set_name in [(validation_patients_indices, "validation"), (train_patients_indices, "train")]: errors = [] for patient in patient_ids: prediction = predictions[patient-1] if "systole_average" in prediction: assert patient == regular_labels[patient-1, 0] error = CRSP(prediction["systole_average"], regular_labels[patient-1, 1]) errors.append(error) error = CRSP(prediction["diastole_average"], regular_labels[patient-1, 2]) errors.append(error) if len(errors)>0: errors = np.array(errors) estimated_CRSP = np.mean(errors) print " %s kaggle loss: %f" % (string.rjust(set_name, 12), estimated_CRSP) validation_dict[set_name] = estimated_CRSP else: print " %s kaggle loss: not calculated" % (string.rjust(set_name, 12)) print "dumping prediction file to %s" % prediction_path with open(prediction_path, 'w') as f: pickle.dump({ 'metadata_path': metadata_path, 'prediction_path': prediction_path, 'submission_path': submission_path, 'configuration_file': config().__name__, 'git_revision_hash': utils.get_git_revision_hash(), 'experiment_id': expid, 'time_since_start': time_since_start, 'param_values': lasagne.layers.get_all_param_values(top_layer), 'predictions': predictions, 'validation_errors': validation_dict, }, f, pickle.HIGHEST_PROTOCOL) print "prediction file dumped" print "dumping submission file to %s" % submission_path with open(submission_path, 'w') as csvfile: csvwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) csvwriter.writerow(['Id'] + ['P%d'%i for i in xrange(600)]) for prediction in predictions: # the submission only has patients 501 to 700 if prediction["patient"] in data_loader.test_patients_indices: if "diastole_average" not in prediction or "systole_average" not in prediction: raise Exception("Not all test-set patients were predicted") csvwriter.writerow(["%d_Diastole" % prediction["patient"]] + ["%.18f" % p for p in prediction["diastole_average"].flatten()]) csvwriter.writerow(["%d_Systole" % prediction["patient"]] + ["%.18f" % p for p in prediction["systole_average"].flatten()]) print "submission file dumped" return
def generate_final_predictions( final_predictions, prediction_tag, expert_predictions_matrix, masked_expert_predictions_matrix, test_expert_predictions_matrix, test_masked_expert_predictions_matrix, optimal_params, average_distribution, valid_labels, expert_pkl_files, expert_weight, disagreement_cutoff): cache_dict = dict() for final_prediction in final_predictions: patient_id = final_prediction['patient'] if patient_id in train_patients_indices: continue print " final prediction of patient %d" % patient_id reoptimized = False # get me the data for this patient # (NUM_EXPERTS, 600) if patient_id in validation_patients_indices: idx = validation_patients_indices.index(patient_id) prediction_matrix = expert_predictions_matrix[:, idx, :] mask_matrix = masked_expert_predictions_matrix[:, idx] elif patient_id in test_patients_indices: idx = test_patients_indices.index(patient_id) prediction_matrix = test_expert_predictions_matrix[:, idx, :] mask_matrix = test_masked_expert_predictions_matrix[:, idx] else: raise "This patient is neither train, validation or test?" # Is there an expert in the set, which did not predict this patient? # if so, re-optimize our weights on the validation set! # so, if a model is unavailble, but should be available, re-optimize! if np.logical_and(np.logical_not(mask_matrix), (expert_weight!=0.0)).any(): if hash_mask(mask_matrix) in cache_dict: (optimal_params_for_this_patient, expert_weight) = cache_dict[hash_mask(mask_matrix)] else: expert_weight, _, optimal_params_for_this_patient = get_optimal_ensemble_weights_for_these_experts( expert_mask=mask_matrix, prediction_matrix=expert_predictions_matrix, mask_matrix=masked_expert_predictions_matrix, labels=valid_labels, average_distribution=average_distribution, ) cache_dict[hash_mask(mask_matrix)] = (optimal_params_for_this_patient, expert_weight) reoptimized = True else: optimal_params_for_this_patient = optimal_params while True: # do-while: break condition at the end last_mask_matrix = mask_matrix final_prediction[prediction_tag] = optimize_expert_weights( expert_predictions=prediction_matrix[:,None,:], mask_matrix=mask_matrix[:,None], average_distribution=average_distribution, do_optimization=False, optimal_params=optimal_params_for_this_patient, ) ## find the disagreement between models # and remove the ones who disagree too much with the average disagreement = find_disagreement( expert_predictions=prediction_matrix, mask_matrix=mask_matrix, ground_truth=final_prediction[prediction_tag] ) mask_matrix = (disagreement<disagreement_cutoff) ## RETRAIN THESE ENSEMBLE WEIGHTS ON THE VALIDATION SET IF NEEDED! if ((last_mask_matrix!=mask_matrix).any() and np.sum(mask_matrix)!=0): if hash_mask(mask_matrix) in cache_dict: (optimal_params_for_this_patient, expert_weight) = cache_dict[hash_mask(mask_matrix)] else: expert_weight, _, optimal_params_for_this_patient = get_optimal_ensemble_weights_for_these_experts( expert_mask=mask_matrix, prediction_matrix=expert_predictions_matrix, mask_matrix=masked_expert_predictions_matrix, labels=valid_labels, average_distribution=average_distribution, ) cache_dict[hash_mask(mask_matrix)] = (optimal_params_for_this_patient, expert_weight) reoptimized = True continue else: break try: test_if_valid_distribution(final_prediction[prediction_tag]) except: final_prediction[prediction_tag] = make_monotone_distribution(final_prediction[prediction_tag]) test_if_valid_distribution(final_prediction[prediction_tag]) if reoptimized: print " Weight: Name:" for expert_name, weight in zip(expert_pkl_files, expert_weight): if weight>0.: print string.rjust("%.3f%%" % (100*weight), 12), print expert_name.split('/')[-1]