예제 #1
0
def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    if FLAGS.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    save_only = getattr(cfg, 'save_prediction_only', False)
    if save_only:
        raise NotImplementedError('The config file only support prediction,'
                                  ' training stage is not implemented now')
    main_arch = cfg.architecture

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    if FLAGS.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            if FLAGS.fp16:
                assert (getattr(model.backbone, 'norm_type', None)
                        != 'affine_channel'), \
                    '--fp16 currently does not support affine channel, ' \
                    ' please modify backbone settings to use batch norm'

            with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
                inputs_def = cfg['TrainReader']['inputs_def']
                feed_vars, train_loader = model.build_inputs(**inputs_def)
                train_fetches = model.train(feed_vars)
                loss = train_fetches['loss']
                if FLAGS.fp16:
                    loss *= ctx.get_loss_scale_var()
                lr = lr_builder()
                optimizer = optim_builder(lr)
                optimizer.minimize(loss)

                if FLAGS.fp16:
                    loss /= ctx.get_loss_scale_var()

            if 'use_ema' in cfg and cfg['use_ema']:
                global_steps = _decay_step_counter()
                ema = ExponentialMovingAverage(
                    cfg['ema_decay'], thres_steps=global_steps)
                ema.update()

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader, devices_num=1)
        eval_loader.set_sample_list_generator(eval_reader, place)

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
        if cfg.metric == 'WIDERFACE':
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1
    if FLAGS.dist:
        dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
                                             train_prog)
        exec_strategy.num_threads = 1

    exe.run(startup_prog)
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    if FLAGS.eval:
        compiled_eval_prog = fluid.CompiledProgram(eval_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    ignore_params = cfg.finetune_exclude_pretrained_params \
                 if 'finetune_exclude_pretrained_params' in cfg else []

    start_iter = 0
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()
    elif cfg.pretrain_weights and fuse_bn and not ignore_params:
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_params(
            exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params)

    train_reader = create_reader(
        cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num,
        cfg,
        devices_num=devices_num)
    train_loader.set_sample_list_generator(train_reader, place)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_smooth_window)
    best_box_ap_list = [0.0, 0]  #[map, iter]

    # use VisualDL to log data
    if FLAGS.use_vdl:
        from visualdl import LogWriter
        vdl_writer = LogWriter(FLAGS.vdl_log_dir)
        vdl_loss_step = 0
        vdl_mAP_step = 0

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

        # use vdl-paddle to log loss
        if FLAGS.use_vdl:
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
                    vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step)
                vdl_loss_step += 1

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        # NOTE : profiler tools, used for benchmark
        if FLAGS.is_profiler and it == 5:
            profiler.start_profiler("All")
        elif FLAGS.is_profiler and it == 10:
            profiler.stop_profiler("total", FLAGS.profiler_path)
            return


        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and (not FLAGS.dist or trainer_id == 0):
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            if 'use_ema' in cfg and cfg['use_ema']:
                exe.run(ema.apply_program)
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
                resolution = None
                if 'Mask' in cfg.architecture:
                    resolution = model.mask_head.resolution
                results = eval_run(
                    exe,
                    compiled_eval_prog,
                    eval_loader,
                    eval_keys,
                    eval_values,
                    eval_cls,
                    cfg,
                    resolution=resolution)
                box_ap_stats = eval_results(
                    results, cfg.metric, cfg.num_classes, resolution,
                    is_bbox_normalized, FLAGS.output_eval, map_type,
                    cfg['EvalReader']['dataset'])

                # use vdl_paddle to log mAP
                if FLAGS.use_vdl:
                    vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step)
                    vdl_mAP_step += 1

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

            if 'use_ema' in cfg and cfg['use_ema']:
                exe.run(ema.restore_program)

    train_loader.reset()
예제 #2
0
def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        import random
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

    if 'log_iter' not in cfg:
        cfg.log_iter = 20

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # add NAS
    config = ([(cfg.search_space)])
    server_address = (cfg.server_ip, cfg.server_port)
    load_checkpoint = FLAGS.resume_checkpoint if FLAGS.resume_checkpoint else None
    sa_nas = SANAS(config,
                   server_addr=server_address,
                   init_temperature=cfg.init_temperature,
                   reduce_rate=cfg.reduce_rate,
                   search_steps=cfg.search_steps,
                   save_checkpoint=cfg.save_dir,
                   load_checkpoint=load_checkpoint,
                   is_server=cfg.is_server)
    start_iter = 0
    train_reader = create_reader(cfg.TrainReader,
                                 (cfg.max_iters - start_iter) * devices_num,
                                 cfg)
    eval_reader = create_reader(cfg.EvalReader)

    constraint = create('Constraint')
    for step in range(cfg.search_steps):
        logger.info('----->>> search step: {} <<<------'.format(step))
        archs = sa_nas.next_archs()[0]

        # build program
        startup_prog = fluid.Program()
        train_prog = fluid.Program()
        with fluid.program_guard(train_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                if FLAGS.fp16:
                    assert (getattr(model.backbone, 'norm_type', None)
                            != 'affine_channel'), \
                        '--fp16 currently does not support affine channel, ' \
                        ' please modify backbone settings to use batch norm'

                with mixed_precision_context(FLAGS.loss_scale,
                                             FLAGS.fp16) as ctx:
                    inputs_def = cfg['TrainReader']['inputs_def']
                    feed_vars, train_loader = model.build_inputs(**inputs_def)
                    train_fetches = archs(feed_vars, 'train', cfg)
                    loss = train_fetches['loss']
                    if FLAGS.fp16:
                        loss *= ctx.get_loss_scale_var()
                    lr = lr_builder()
                    optimizer = optim_builder(lr)
                    optimizer.minimize(loss)
                    if FLAGS.fp16:
                        loss /= ctx.get_loss_scale_var()

        current_constraint = constraint.compute_constraint(train_prog)
        logger.info('current steps: {}, constraint {}'.format(
            step, current_constraint))

        if (constraint.max_constraint != None
                and current_constraint > constraint.max_constraint) or (
                    constraint.min_constraint != None
                    and current_constraint < constraint.min_constraint):
            continue

        # parse train fetches
        train_keys, train_values, _ = parse_fetches(train_fetches)
        train_values.append(lr)

        if FLAGS.eval:
            eval_prog = fluid.Program()
            with fluid.program_guard(eval_prog, startup_prog):
                with fluid.unique_name.guard():
                    model = create(main_arch)
                    inputs_def = cfg['EvalReader']['inputs_def']
                    feed_vars, eval_loader = model.build_inputs(**inputs_def)
                    fetches = archs(feed_vars, 'eval', cfg)
            eval_prog = eval_prog.clone(True)

            eval_loader.set_sample_list_generator(eval_reader, place)
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
            eval_keys, eval_values, eval_cls = parse_fetches(
                fetches, eval_prog, extra_keys)

        # compile program for multi-devices
        build_strategy = fluid.BuildStrategy()
        build_strategy.fuse_all_optimizer_ops = False
        build_strategy.fuse_elewise_add_act_ops = True

        exec_strategy = fluid.ExecutionStrategy()
        # iteration number when CompiledProgram tries to drop local execution scopes.
        # Set it to be 1 to save memory usages, so that unused variables in
        # local execution scopes can be deleted after each iteration.
        exec_strategy.num_iteration_per_drop_scope = 1
        if FLAGS.dist:
            dist_utils.prepare_for_multi_process(exe, build_strategy,
                                                 startup_prog, train_prog)
            exec_strategy.num_threads = 1

        exe.run(startup_prog)
        compiled_train_prog = fluid.CompiledProgram(
            train_prog).with_data_parallel(loss_name=loss.name,
                                           build_strategy=build_strategy,
                                           exec_strategy=exec_strategy)
        if FLAGS.eval:
            compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog)

        train_loader.set_sample_list_generator(train_reader, place)

        train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
        train_loader.start()
        end_time = time.time()

        cfg_name = os.path.basename(FLAGS.config).split('.')[0]
        save_dir = os.path.join(cfg.save_dir, cfg_name)
        time_stat = deque(maxlen=cfg.log_smooth_window)
        ap = 0
        for it in range(start_iter, cfg.max_iters):
            start_time = end_time
            end_time = time.time()
            time_stat.append(end_time - start_time)
            time_cost = np.mean(time_stat)
            eta_sec = (cfg.max_iters - it) * time_cost
            eta = str(datetime.timedelta(seconds=int(eta_sec)))
            outs = exe.run(compiled_train_prog, fetch_list=train_values)
            stats = {
                k: np.array(v).mean()
                for k, v in zip(train_keys, outs[:-1])
            }

            train_stats.update(stats)
            logs = train_stats.log()
            if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
                strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                    it, np.mean(outs[-1]), logs, time_cost, eta)
                logger.info(strs)

            if (it > 0 and it == cfg.max_iters - 1) and (not FLAGS.dist
                                                         or trainer_id == 0):
                save_name = str(
                    it) if it != cfg.max_iters - 1 else "model_final"
                checkpoint.save(exe, train_prog,
                                os.path.join(save_dir, save_name))
                if FLAGS.eval:
                    # evaluation
                    results = eval_run(exe, compiled_eval_prog, eval_loader,
                                       eval_keys, eval_values, eval_cls)
                    ap = calculate_ap_py(results)

        train_loader.reset()
        eval_loader.reset()
        logger.info('rewards: ap is {}'.format(ap))
        sa_nas.reward(float(ap))
    current_best_tokens = sa_nas.current_info()['best_tokens']
    logger.info("All steps end, the best BlazeFace-NAS structure  is: ")
    sa_nas.tokens2arch(current_best_tokens)
예제 #3
0
def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        import random
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    main_arch = cfg.architecture

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            if FLAGS.fp16:
                assert (getattr(model.backbone, 'norm_type', None)
                        != 'affine_channel'), \
                    '--fp16 currently does not support affine channel, ' \
                    ' please modify backbone settings to use batch norm'

            with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
                inputs_def = cfg['TrainReader']['inputs_def']
                feed_vars, train_loader = model.build_inputs(**inputs_def)
                train_fetches = model.train(feed_vars)
                loss = train_fetches['loss']
                if FLAGS.fp16:
                    loss *= ctx.get_loss_scale_var()
                lr = lr_builder()
                optimizer = optim_builder(lr)
                optimizer.minimize(loss)
                if FLAGS.fp16:
                    loss /= ctx.get_loss_scale_var()

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.print_params:
        param_delimit_str = '-' * 20 + "All parameters in current graph" + '-' * 20
        print(param_delimit_str)
        for block in train_prog.blocks:
            for param in block.all_parameters():
                print("parameter name: {}\tshape: {}".format(param.name,
                                                             param.shape))
        print('-' * len(param_delimit_str))
        return

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader)
        eval_loader.set_sample_list_generator(eval_reader, place)

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
        if cfg.metric == 'WIDERFACE':
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1
    if FLAGS.dist:
        dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
                                             train_prog)
        exec_strategy.num_threads = 1

    exe.run(startup_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    start_iter = 0
    if cfg.pretrain_weights:
        checkpoint.load_params(exe, train_prog, cfg.pretrain_weights)

    pruned_params = FLAGS.pruned_params
    assert FLAGS.pruned_params is not None, \
        "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
    pruned_params = FLAGS.pruned_params.strip().split(",")
    logger.info("pruned params: {}".format(pruned_params))
    pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
    logger.info("pruned ratios: {}".format(pruned_ratios))
    assert len(pruned_params) == len(pruned_ratios), \
        "The length of pruned params and pruned ratios should be equal."
    assert (pruned_ratios > [0] * len(pruned_ratios) and
            pruned_ratios < [1] * len(pruned_ratios)
            ), "The elements of pruned ratios should be in range (0, 1)."

    assert FLAGS.prune_criterion in ['l1_norm', 'geometry_median'], \
            "unsupported prune criterion {}".format(FLAGS.prune_criterion)
    pruner = Pruner(criterion=FLAGS.prune_criterion)
    train_prog = pruner.prune(
        train_prog,
        fluid.global_scope(),
        params=pruned_params,
        ratios=pruned_ratios,
        place=place,
        only_graph=False)[0]

    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    if FLAGS.eval:

        base_flops = flops(eval_prog)
        eval_prog = pruner.prune(
            eval_prog,
            fluid.global_scope(),
            params=pruned_params,
            ratios=pruned_ratios,
            place=place,
            only_graph=True)[0]
        pruned_flops = flops(eval_prog)
        logger.info("FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}".format(
            float(base_flops - pruned_flops) / base_flops, base_flops,
            pruned_flops))
        compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog)

    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()

    train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) *
                                 devices_num, cfg)
    train_loader.set_sample_list_generator(train_reader, place)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_smooth_window)
    best_box_ap_list = [0.0, 0]  #[map, iter]

    # use tb-paddle to log data
    if FLAGS.use_tb:
        from tb_paddle import SummaryWriter
        tb_writer = SummaryWriter(FLAGS.tb_log_dir)
        tb_loss_step = 0
        tb_mAP_step = 0

    if FLAGS.eval:
        # evaluation
        results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys,
                           eval_values, eval_cls, cfg)
        resolution = None
        if 'mask' in results[0]:
            resolution = model.mask_head.resolution
        dataset = cfg['EvalReader']['dataset']
        box_ap_stats = eval_results(
            results,
            cfg.metric,
            cfg.num_classes,
            resolution,
            is_bbox_normalized,
            FLAGS.output_eval,
            map_type,
            dataset=dataset)

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

        # use tb-paddle to log loss
        if FLAGS.use_tb:
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
                    tb_writer.add_scalar(loss_name, loss_value, tb_loss_step)
                tb_loss_step += 1

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and (not FLAGS.dist or trainer_id == 0):
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
                results = eval_run(
                    exe,
                    compiled_eval_prog,
                    eval_loader,
                    eval_keys,
                    eval_values,
                    eval_cls,
                    cfg=cfg)
                resolution = None
                if 'mask' in results[0]:
                    resolution = model.mask_head.resolution
                box_ap_stats = eval_results(
                    results,
                    cfg.metric,
                    cfg.num_classes,
                    resolution,
                    is_bbox_normalized,
                    FLAGS.output_eval,
                    map_type,
                    dataset=dataset)

                # use tb_paddle to log mAP
                if FLAGS.use_tb:
                    tb_writer.add_scalar("mAP", box_ap_stats[0], tb_mAP_step)
                    tb_mAP_step += 1

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

    train_loader.reset()