예제 #1
0
파일: extract.py 프로젝트: zisi/stvid
def plot_header(fname, ff, iod_line):
    # ppgplot arrays
    heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0])
    heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0])
    heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0])
    heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0])

    # Plot
    ppg.pgopen(fname)
    ppg.pgpap(0.0, 1.0)
    ppg.pgsvp(0.1, 0.95, 0.1, 0.8)

    ppg.pgsch(0.8)
    ppg.pgmtxt("T", 6.0, 0.0, 0.0,
               "UT Date: %.23s  COSPAR ID: %04d" % (ff.nfd, ff.site_id))
    if is_calibrated(ff):
        ppg.pgsci(1)
    else:
        ppg.pgsci(2)
    ppg.pgmtxt(
        "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" %
        (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1]))
    ppg.pgsci(1)
    ppg.pgmtxt("T", 3.6, 0.0, 0.0, ("FoV: %.2f\\(2218)x%.2f\\(2218) "
                                    "Scale: %.2f''x%.2f'' pix\\u-1\\d") %
               (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy))
    ppg.pgmtxt(
        "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" %
        (np.mean(ff.zmax), np.std(ff.zmax), ff.zmaxmin, ff.zmaxmax))
    ppg.pgmtxt("T", 0.3, 0.0, 0.0, iod_line)

    ppg.pgsch(1.0)
    ppg.pgwnad(0.0, ff.nx, 0.0, ff.ny)
    ppg.pglab("x (pix)", "y (pix)", " ")
    ppg.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)
예제 #2
0
def addInfo(showStats, values, label, xPosition, yPosition):

    if showStats:
        # Compute mean and standard deviation  of yaxis values
        mean = values.mean()
        std = values.std()

        print "   " + label + ":" + " mean = %.5f" % mean + "\t std = %.5f" % std

    ppgplot.pgmtxt("T", yPosition, xPosition, 0.5, label)
예제 #3
0
def addInfo(showStats, values, label, xPosition, yPosition):

    if showStats:
        # Compute mean and standard deviation  of yaxis values
        mean = values.mean()
        std = values.std()

        print "   " + label + ":" + " mean = %.5f" % mean + "\t std = %.5f" % std

    ppgplot.pgmtxt('T', yPosition, xPosition, 0.5, label)
예제 #4
0
def plotdVdz():
    nv = 3.
    nr = 1.
    ppgplot.pgbeg("dVdz.ps/vcps", 1, 1)  #color port.
    ppgplot.pgpap(8., 1.25)
    ppgplot.pgpage
    ppgplot.pgsch(1.2)  #font size
    ppgplot.pgslw(3)  #line width

    # 1st panel with symbols w/ stddev errorbars

    x1 = .15
    x2 = .45
    x3 = .6
    x4 = .95
    y1 = .15
    y2 = .425
    y3 = .575
    y4 = .85
    xlabel = 14.1 - 14.
    ylabel = 1.15
    schdef = 1.2
    slwdef = 4
    ppgplot.pgsch(schdef)
    xmin = 0.
    xmax = 1.1
    ymin = 0.
    ymax = 1.2

    ppgplot.pgsvp(x1, x4, y1, y4)  #sets viewport
    ppgplot.pgslw(slwdef)  #line width
    ppgplot.pgswin(xmin, xmax, ymin, ymax)  #axes limits
    ppgplot.pgbox('bcnst', .2, 2, 'bcvnst', .2, 2)  #tickmarks and labeling
    ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "z")  #xlabel
    ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "(1/DH)\u3\d c dV\dc\u/dv/d\gW")

    z = N.arange(0., 5., .1)
    beta = ((1 + z)**2 - 1) / ((1 + z)**2 + 1)
    dV = N.zeros(len(z), 'd')
    for i in range(len(z)):
        #dz=dv/(1+z[i])*(1- ((1+z[i])**2 -1)/((1+z[i])**2+1))**(-2)
        #z1=z[i]-0.5*dz
        #z2=z[i]+0.5*dz
        #dV[i]=my.dL(z2,h) - my.dL(z1,h)
        dA = my.DA(z[i], h) * 206264. / 1000.
        dV[i] = DH * (1 + z[i]) * (dA)**2 / (my.E(
            z[i])) / (1 - beta[i])**2 / DH**3
        #dV[i]=DH*(1+z[i])**2*(dA)**2/(my.E(z[i]))/DH**3#for comparison w/Hogg
        if z[i] < 1:
            print i, z[i], dV[i], dV[i]**(1. / 3.)

    ppgplot.pgline(z, dV)

    ppgplot.pgend()
예제 #5
0
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr,
                 Total_observed_time, xwin):
    """
    Plot DM vs Time subplot for the spd plots.
    Input: 
        dms: list of dms of single pulse events to be plotted.
        times: list of times of single pulse events to be plotted.
        sigmas: list of sigmas of single pulse events to be plotted.
        dm_arr: array of dms of the main single pulse group (plotted in black).
        sigma_arr: array of sigmas of the main single pulse group (plotted in black).
        time_arr: array of times of single pulse group (plotted in black).
        Total_observed_time: float : Total observation time 
        xwin: True or False. Use xwin or vcps window.
    """
    min_dm = Num.min(dms)
    max_dm = Num.max(dms)
    ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm)
    ppgplot.pgsch(0.8)
    ppgplot.pgslw(3)
    ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
    ppgplot.pgslw(3)
    ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
    ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
    snr_range = 12.0
    cand_symbols = []
    cand_symbols_group = []
    for i in range(len(sigmas)):
        if sigmas[i] > 20.00:
            sigmas[i] = 20.0
        cand_symbol = int((sigmas[i] - 5.0) / snr_range * 6.0 + 20.5)
        cand_symbols.append(min(cand_symbol, 26))
    cand_symbols = Num.array(cand_symbols)
    for i in range(len(dm_arr)):
        cand_symbol = int((sigma_arr[i] - 5.0) / snr_range * 6.0 + 20.5)
        cand_symbols_group.append(min(cand_symbol, 26))
    cand_symbols_group = Num.array(cand_symbols_group)
    dms = Num.array(dms)
    times = Num.array(times)
    dm_arr = Num.array(dm_arr)
    time_arr = Num.array(time_arr)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds = Num.nonzero(cand_symbols == ii)[0]
        ppgplot.pgshls(1, 0.0, 0.5, 0.0)
        ppgplot.pgpt(times[inds], dms[inds], ii)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds_1 = Num.nonzero(cand_symbols_group == ii)[0]
        if xwin:
            ppgplot.pgshls(1, 0.0, 0.8, 0.0)
        else:
            ppgplot.pgshls(1, 0.0, 0.0, 0.0)
        ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
예제 #6
0
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin):
    """
    Plot DM vs Time subplot for the spd plots.
    Input: 
        dms: list of dms of single pulse events to be plotted.
        times: list of times of single pulse events to be plotted.
        sigmas: list of sigmas of single pulse events to be plotted.
        dm_arr: array of dms of the main single pulse group (plotted in black).
        sigma_arr: array of sigmas of the main single pulse group (plotted in black).
        time_arr: array of times of single pulse group (plotted in black).
        Total_observed_time: float : Total observation time 
        xwin: True or False. Use xwin or vcps window.
    """
    min_dm = Num.min(dms)
    max_dm = Num.max(dms)
    ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm)
    ppgplot.pgsch(0.8)
    ppgplot.pgslw(3)
    ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
    ppgplot.pgslw(3)
    ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
    ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
    snr_range = 12.0
    cand_symbols = []
    cand_symbols_group = []
    for i in range(len(sigmas)):
        if sigmas[i] > 20.00:
            sigmas[i] = 20.0
        cand_symbol = int((sigmas[i] - 5.0)/snr_range * 6.0 + 20.5)
        cand_symbols.append(min(cand_symbol, 26))
    cand_symbols = Num.array(cand_symbols)
    for i in range(len(dm_arr)):
        cand_symbol = int((sigma_arr[i] - 5.0)/snr_range * 6.0 + 20.5)
        cand_symbols_group.append(min(cand_symbol, 26))
    cand_symbols_group = Num.array(cand_symbols_group)
    dms = Num.array(dms)
    times = Num.array(times)
    dm_arr = Num.array(dm_arr)
    time_arr = Num.array(time_arr)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds = Num.nonzero(cand_symbols == ii)[0]
        ppgplot.pgshls(1, 0.0, 0.5, 0.0)
        ppgplot.pgpt(times[inds], dms[inds], ii)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds_1 = Num.nonzero(cand_symbols_group == ii)[0]
        if xwin:
            ppgplot.pgshls(1, 0.0, 0.8, 0.0)
        else:
            ppgplot.pgshls(1, 0.0, 0.0, 0.0)
        ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
예제 #7
0
def plotsighaall(sig, psig, o2b, file, nbin):
    o2b = N.array(o2b, 'f')
    sig = N.array(sig, 'f')
    psig = N.array(psig, 'f')
    #o2b=o2b+4.
    o2 = N.compress(o2b > -500., o2b)
    sig = N.compress(o2b > -500., sig)
    psig = N.compress(o2b > -500., psig)

    psplot = file + ".ps"
    psplotinit(psplot)
    #ppgplot.pgsch(0.7)
    ppgplot.pgslw(7)
    (sigbin, o2bin) = my.binit(sig, o2, nbin)
    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgswin(-2., 2., -5., 20.)
    ppgplot.pgbox('blcnst', 0.0, 0.0, 'bcvnst', 0.0,
                  0.0)  #tickmarks and labeling
    ppgplot.pgsch(1.0)
    ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)")  #xlabel
    ppgplot.pgsch(1.2)
    ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW(H\ga) (\(2078))')

    ppgplot.pgsls(1)  #dotted
    ppgplot.pgslw(4)  #line width

    ppgplot.pgpt(sigbin, o2bin, 17)
    ppgplot.pgpt(N.log10(sig), o2, 1)
    #my.errory(sigbin,o2bin,yerr)
    #print 'dude2', sigbin, o2bin
    ppgplot.pgsci(2)
    ppgplot.pgline(sigbin, o2bin)
    (sigbin, o2bin) = my.binit(psig, o2, nbin)

    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgsci(1)
    ppgplot.pgpt(sigbin, o2bin, 21)
    #my.errory(sigbin,o2bin,yerr)
    ppgplot.pgsci(4)
    ppgplot.pgline(sigbin, o2bin)
    ppgplot.pgsci(1)
    ppgplot.pgend()
예제 #8
0
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr,
                 Total_observed_time, xwin):
    """
    Plot DM vs Time.
    """
    min_dm = Num.min(dms)
    max_dm = Num.max(dms)
    ppgplot.pgsvp(0.48, 0.97, 0.1, 0.54)
    ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm)
    ppgplot.pgsch(0.8)
    ppgplot.pgslw(3)
    ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
    ppgplot.pgslw(3)
    ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
    ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
    snr_range = 12.0
    cand_symbols = []
    cand_symbols_group = []
    for i in range(len(sigmas)):
        if sigmas[i] > 20.00:
            sigmas[i] = 20.0
        cand_symbol = int((sigmas[i] - 5.0) / snr_range * 6.0 + 20.5)
        cand_symbols.append(min(cand_symbol, 26))
    cand_symbols = Num.array(cand_symbols)
    for i in range(len(dm_arr)):
        cand_symbol = int((sigma_arr[i] - 5.0) / snr_range * 6.0 + 20.5)
        cand_symbols_group.append(min(cand_symbol, 26))
    cand_symbols_group = Num.array(cand_symbols_group)
    dms = Num.array(dms)
    times = Num.array(times)
    dm_arr = Num.array(dm_arr)
    time_arr = Num.array(time_arr)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds = Num.nonzero(cand_symbols == ii)[0]
        ppgplot.pgshls(1, 0.0, 0.5, 0.0)
        ppgplot.pgpt(times[inds], dms[inds], ii)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds_1 = Num.nonzero(cand_symbols_group == ii)[0]
        if xwin:
            ppgplot.pgshls(1, 0.0, 0.8, 0.0)
        else:
            ppgplot.pgshls(1, 0.0, 0.0, 0.0)
        ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
예제 #9
0
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin):
    """
    Plot DM vs Time.
    """
    min_dm = Num.min(dms)
    max_dm = Num.max(dms)
    ppgplot.pgsvp(0.48, 0.97, 0.1, 0.54)
    ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm)
    ppgplot.pgsch(0.8)
    ppgplot.pgslw(3)
    ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
    ppgplot.pgslw(3)
    ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
    ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
    snr_range = 12.0
    cand_symbols = []
    cand_symbols_group = []
    for i in range(len(sigmas)):
        if sigmas[i] > 20.00:
            sigmas[i] = 20.0
        cand_symbol = int((sigmas[i] - 5.0)/snr_range * 6.0 + 20.5)
        cand_symbols.append(min(cand_symbol, 26))
    cand_symbols = Num.array(cand_symbols)
    for i in range(len(dm_arr)):
        cand_symbol = int((sigma_arr[i] - 5.0)/snr_range * 6.0 + 20.5)
        cand_symbols_group.append(min(cand_symbol, 26))
    cand_symbols_group = Num.array(cand_symbols_group)
    dms = Num.array(dms)
    times = Num.array(times)
    dm_arr = Num.array(dm_arr)
    time_arr = Num.array(time_arr)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds = Num.nonzero(cand_symbols == ii)[0]
        ppgplot.pgshls(1, 0.0, 0.5, 0.0)
        ppgplot.pgpt(times[inds], dms[inds], ii)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds_1 = Num.nonzero(cand_symbols_group == ii)[0]
        if xwin:
            ppgplot.pgshls(1, 0.0, 0.8, 0.0)
        else:
            ppgplot.pgshls(1, 0.0, 0.0, 0.0)
        ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
예제 #10
0
def sub1plotngalmcl(x, y1, y2):
    schdef = 1.2
    slwdef = 4
    ppgplot.pgsch(schdef)
    xmin = -.5
    xmax = 1.
    ymin = 0.
    ymax = 60.
    #nbin=5
    ppgplot.pgslw(slwdef)  #line width
    ppgplot.pgswin(xmin, xmax, ymin, ymax)  #axes limits
    ppgplot.pgbox('bcnlst', 1.0, 0, 'bcvnst', 10., 2)  #tickmarks and labeling
    ppgplot.pgmtxt(
        'b', 2.5, 0.5, 0.5,
        "log\d10\u(10\u14\d M\dhalo\u/h\u-1\d M\d\(2281)\u)")  #xlabel
    ppgplot.pgmtxt('l', 2.1, 0.5, 0.5, "N\dgal\u")

    (xbin, ybin, ybinerr) = my.biniterr(x, y1, nbin)
    print y1
    print 'ybin for y1 = ', ybin

    xbin = N.log10(
        xbin) + 12. - 14.  #add back 10^12 Msun, then divide by 10^14
    ppgplot.pgsch(1.5)
    ppgplot.pgpt(xbin, ybin, 7)
    ppgplot.pgslw(3)
    ppgplot.pgerrb(6, xbin, ybin, ybinerr, 2.)
    #my.errory(xbin,ybin,ybinerr)
    (xbin, ybin, ybinerr) = my.biniterr(x, y2, nbin)
    print y2
    print 'ybin = ', ybin

    xbin = N.log10(
        xbin) + 12. - 14.  #add back 10^12 Msun, then divide by 10^14
    ppgplot.pgsch(1.75)
    ppgplot.pgpt(xbin, ybin, 17)
    ppgplot.pgsch(schdef)
    ppgplot.pgerrb(6, xbin, ybin, ybinerr, 2.)
    ppgplot.pgslw(slwdef)
예제 #11
0
def plotsigo2all(sig, psig, o2b, file, nbin):
    #o2=N.zeros(len(o2b),'f')
    #for i in range(len(o2b)):
    #print i, sig[i], psig[i], o2b[i]
    #    if o2b[i] < 0:

    #        o2[i]=-1*o2b[i]
    #print "hey", o2[i]
    o2 = o2b
    psplot = file + ".ps"
    psplotinit(psplot)
    ppgplot.pgsch(0.7)
    (sigbin, o2bin) = my.binit(sig, o2, nbin)
    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgswin(-1., 3., -.5, 10.)
    ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0,
                  0.0)  #tickmarks and labeling
    ppgplot.pgsch(1.0)
    ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)")  #xlabel
    ppgplot.pgsch(1.2)
    ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW([OII]) (\(2078))')

    ppgplot.pgsls(1)  #dotted
    ppgplot.pgslw(4)  #line width
    ppgplot.pgsci(2)
    ppgplot.pgpt(sigbin, o2bin, 17)
    #print 'dude2', sigbin, o2bin
    ppgplot.pgline(sigbin, o2bin)
    (sigbin, o2bin) = my.binit(psig, o2, nbin)
    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgsci(4)
    ppgplot.pgpt(sigbin, o2bin, 21)
    ppgplot.pgline(sigbin, o2bin)
    ppgplot.pgsci(1)
    ppgplot.pgend()
예제 #12
0
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \
             rangex2=None, rangey2=None, labx2=None, laby2=None, \
             logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \
             fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \
             panels=[1,1], device=ppgplot_device_):
    """
    prepplot(rangex, rangey, ...)
        Open a PGPLOT device for plotting.
            'rangex' and 'rangey' are sequence objects giving min and
                max values for each axis.
        The optional entries are:
            title:    graph title                 (default = None)   
            labx:     label for the x-axis        (default = None)   
            laby:     label for the y-axis        (default = None)   
            rangex2:  ranges for 2nd x-axis       (default = None)   
            rangey2:  ranges for 2nd y-axis       (default = None)   
            labx2:    label for the 2nd x-axis    (default = None)   
            laby2:    label for the 2nd y-axis    (default = None)   
            logx:     make the 1st x-axis log     (default = 0 (no))
            logy:     make the 1st y-axis log     (default = 0 (no))
            logx2:    make the 2nd x-axis log     (default = 0 (no))
            logy2:    make the 2nd y-axis log     (default = 0 (no))
            font:     PGPLOT font to use          (default = 1 (normal))
            fontsize: PGPLOT font size to use     (default = 1.0 (normal))
            id:       Show ID line on plot        (default = 0 (no)) 
            aspect:   Aspect ratio                (default = 1 (square))
            ticks:    Ticks point in or out       (default = 'in')   
            panels:   Number of subpanels [r,c]   (default = [1,1])
            device:   PGPLOT device to use        (default = '/XWIN')
        Note:  Many default values are defined in global variables
            with names like ppgplot_font_ or ppgplot_device_.
    """
    global ppgplot_dev_open_, ppgplot_dev_prep_
    # Check if we will use second X or Y axes
    # Note:  if using a 2nd X axis, the range should correspond
    #   to the minimum and maximum values of the 1st X axis.  If
    #   using a 2nd Y axis, the range should correspond to the
    #   scalerange() values of the 1st Y axis.
    if rangex2 is None:
        rangex2 = rangex
        otherxaxis = 0
    else:
        otherxaxis = 1
    if rangey2 is None:
        rangey2 = rangey
        otheryaxis = 0
    else:
        otheryaxis = 1
    # Open the plot device
    if (not ppgplot_dev_open_):
        ppgplot.pgopen(device)
        # Let the routines know that we already have a device open
        ppgplot_dev_open_ = 1
        # Set the aspect ratio
        ppgplot.pgpap(0.0, aspect)
        if (panels != [1, 1]):
            # Set the number of panels
            ppgplot.pgsubp(panels[0], panels[1])
            ppgplot.pgpage()
    # Choose the font
    ppgplot.pgscf(font)
    # Choose the font size
    ppgplot.pgsch(fontsize)
    # Choose the font size
    ppgplot.pgslw(ppgplot_linewidth_)
    # Plot the 2nd axis if needed first
    if otherxaxis or otheryaxis:
        ppgplot.pgvstd()
        ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1])
        # Decide how the axes will be drawn
        if ticks == 'in': env = "CMST"
        else: env = "CMSTI"
        if logx2: lxenv = 'L'
        else: lxenv = ''
        if logy2: lyenv = 'L'
        else: lyenv = ''
        if otherxaxis and otheryaxis:
            ppgplot.pgbox(env + lxenv, 0.0, 0, env + lyenv, 0.0, 0)
        elif otheryaxis:
            ppgplot.pgbox("", 0.0, 0, env + lyenv, 0.0, 0)
        else:
            ppgplot.pgbox(env + lxenv, 0.0, 0, "", 0.0, 0)
    # Now setup the primary axis
    ppgplot.pgvstd()
    ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1])
    # Decide how the axes will be drawn
    if ticks == 'in': env = "ST"
    else: env = "STI"
    if logx: lxenv = 'L'
    else: lxenv = ''
    if logy: lyenv = 'L'
    else: lyenv = ''
    if otherxaxis and otheryaxis:
        ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0)
    elif otheryaxis:
        ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0)
    elif otherxaxis:
        ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0)
    else:
        ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0)
    # Add labels
    if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title)
    ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx)
    ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby)
    if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2)
    if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2)
    # Add ID line if required
    if (id == 1): ppgplot.pgiden()
    # Let the routines know that we have already prepped the device
    ppgplot_dev_prep_ = 1
예제 #13
0
def main():
    parser = OptionParser(usage)
    parser.add_option(
        "-x",
        "--xwin",
        action="store_true",
        dest="xwin",
        default=False,
        help="Don't make a postscript plot, just use an X-window")
    parser.add_option("-p",
                      "--noplot",
                      action="store_false",
                      dest="makeplot",
                      default=True,
                      help="Look for pulses but do not generate a plot")
    parser.add_option(
        "-m",
        "--maxwidth",
        type="float",
        dest="maxwidth",
        default=0.0,
        help="Set the max downsampling in sec (see below for default)")
    parser.add_option("-t",
                      "--threshold",
                      type="float",
                      dest="threshold",
                      default=5.0,
                      help="Set a different threshold SNR (default=5.0)")
    parser.add_option("-s",
                      "--start",
                      type="float",
                      dest="T_start",
                      default=0.0,
                      help="Only plot events occuring after this time (s)")
    parser.add_option("-e",
                      "--end",
                      type="float",
                      dest="T_end",
                      default=1e9,
                      help="Only plot events occuring before this time (s)")
    parser.add_option("-g",
                      "--glob",
                      type="string",
                      dest="globexp",
                      default=None,
                      help="Process the files from this glob expression")
    parser.add_option("-f",
                      "--fast",
                      action="store_true",
                      dest="fast",
                      default=False,
                      help="Use a faster method of de-trending (2x speedup)")
    (opts, args) = parser.parse_args()
    if len(args) == 0:
        if opts.globexp == None:
            print full_usage
            sys.exit(0)
        else:
            args = []
            for globexp in opts.globexp.split():
                args += glob.glob(globexp)
    useffts = True
    dosearch = True
    if opts.xwin:
        pgplot_device = "/XWIN"
    else:
        pgplot_device = ""

    fftlen = 8192  # Should be a power-of-two for best speed
    chunklen = 8000  # Must be at least max_downfact less than fftlen
    detrendlen = 1000  # length of a linear piecewise chunk of data for detrending
    blocks_per_chunk = chunklen / detrendlen
    overlap = (fftlen - chunklen) / 2
    worklen = chunklen + 2 * overlap  # currently it is fftlen...

    max_downfact = 30
    default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150]

    if args[0].endswith(".singlepulse"):
        filenmbase = args[0][:args[0].rfind(".singlepulse")]
        dosearch = False
    elif args[0].endswith(".dat"):
        filenmbase = args[0][:args[0].rfind(".dat")]
    else:
        filenmbase = args[0]

    # Don't do a search, just read results and plot
    if not dosearch:
        info, DMs, candlist, num_v_DMstr = \
              read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end)
        orig_N, orig_dt = int(info.N), info.dt
        obstime = orig_N * orig_dt
    else:
        DMs = []
        candlist = []
        num_v_DMstr = {}

        # Loop over the input files
        for filenm in args:
            if filenm.endswith(".dat"):
                filenmbase = filenm[:filenm.rfind(".dat")]
            else:
                filenmbase = filenm
            info = infodata.infodata(filenmbase + ".inf")
            DMstr = "%.2f" % info.DM
            DMs.append(info.DM)
            N, dt = int(info.N), info.dt
            obstime = N * dt
            # Choose the maximum width to search based on time instead
            # of bins.  This helps prevent increased S/N when the downsampling
            # changes as the DM gets larger.
            if opts.maxwidth > 0.0:
                downfacts = [
                    x for x in default_downfacts if x * dt <= opts.maxwidth
                ]
            else:
                downfacts = [x for x in default_downfacts if x <= max_downfact]
            if len(downfacts) == 0:
                downfacts = [default_downfacts[0]]
            if (filenm == args[0]):
                orig_N = N
                orig_dt = dt
                if useffts:
                    fftd_kerns = make_fftd_kerns(downfacts, fftlen)
            if info.breaks:
                offregions = zip([x[1] for x in info.onoff[:-1]],
                                 [x[0] for x in info.onoff[1:]])
            outfile = open(filenmbase + '.singlepulse', mode='w')

            # Compute the file length in detrendlens
            roundN = N / detrendlen * detrendlen
            numchunks = roundN / chunklen
            # Read in the file
            print 'Reading "%s"...' % filenm
            timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN)
            # Split the timeseries into chunks for detrending
            numblocks = roundN / detrendlen
            timeseries.shape = (numblocks, detrendlen)
            stds = Num.zeros(numblocks, dtype=Num.float64)
            # de-trend the data one chunk at a time
            print '  De-trending the data and computing statistics...'
            for ii, chunk in enumerate(timeseries):
                if opts.fast:  # use median removal instead of detrending (2x speedup)
                    tmpchunk = chunk.copy()
                    tmpchunk.sort()
                    med = tmpchunk[detrendlen / 2]
                    chunk -= med
                    tmpchunk -= med
                else:
                    # The detrend calls are the most expensive in the program
                    timeseries[ii] = scipy.signal.detrend(chunk, type='linear')
                    tmpchunk = timeseries[ii].copy()
                    tmpchunk.sort()
                # The following gets rid of (hopefully) most of the
                # outlying values (i.e. power dropouts and single pulses)
                # If you throw out 5% (2.5% at bottom and 2.5% at top)
                # of random gaussian deviates, the measured stdev is ~0.871
                # of the true stdev.  Thus the 1.0/0.871=1.148 correction below.
                # The following is roughly .std() since we already removed the median
                stds[ii] = Num.sqrt(
                    (tmpchunk[detrendlen / 40:-detrendlen / 40]**2.0).sum() /
                    (0.95 * detrendlen))
            stds *= 1.148
            # sort the standard deviations and separate those with
            # very low or very high values
            sort_stds = stds.copy()
            sort_stds.sort()
            # identify the differences with the larges values (this
            # will split off the chunks with very low and very high stds
            locut = (sort_stds[1:numblocks / 2 + 1] -
                     sort_stds[:numblocks / 2]).argmax() + 1
            hicut = (sort_stds[numblocks / 2 + 1:] -
                     sort_stds[numblocks / 2:-1]).argmax() + numblocks / 2 - 2
            std_stds = scipy.std(sort_stds[locut:hicut])
            median_stds = sort_stds[(locut + hicut) / 2]
            lo_std = median_stds - 4.0 * std_stds
            hi_std = median_stds + 4.0 * std_stds
            # Determine a list of "bad" chunks.  We will not search these.
            bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0]
            print "    pseudo-median block standard deviation = %.2f" % (
                median_stds)
            print "    identified %d bad blocks out of %d (i.e. %.2f%%)" % \
                  (len(bad_blocks), len(stds),
                   100.0*float(len(bad_blocks))/float(len(stds)))
            stds[bad_blocks] = median_stds
            print "  Now searching..."

            # Now normalize all of the data and reshape it to 1-D
            timeseries /= stds[:, Num.newaxis]
            timeseries.shape = (roundN, )
            # And set the data in the bad blocks to zeros
            # Even though we don't search these parts, it is important
            # because of the overlaps for the convolutions
            for bad_block in bad_blocks:
                loind, hiind = bad_block * detrendlen, (bad_block +
                                                        1) * detrendlen
                timeseries[loind:hiind] = 0.0
            # Convert to a set for faster lookups below
            bad_blocks = set(bad_blocks)

            # Step through the data
            dm_candlist = []
            for chunknum in range(numchunks):
                loind = chunknum * chunklen - overlap
                hiind = (chunknum + 1) * chunklen + overlap
                # Take care of beginning and end of file overlap issues
                if (chunknum == 0):  # Beginning of file
                    chunk = Num.zeros(worklen, dtype=Num.float32)
                    chunk[overlap:] = timeseries[loind + overlap:hiind]
                elif (chunknum == numchunks - 1):  # end of the timeseries
                    chunk = Num.zeros(worklen, dtype=Num.float32)
                    chunk[:-overlap] = timeseries[loind:hiind - overlap]
                else:
                    chunk = timeseries[loind:hiind]

                # Make a set with the current block numbers
                lowblock = blocks_per_chunk * chunknum
                currentblocks = set(Num.arange(blocks_per_chunk) + lowblock)
                localgoodblocks = Num.asarray(
                    list(currentblocks - bad_blocks)) - lowblock
                # Search this chunk if it is not all bad
                if len(localgoodblocks):
                    # This is the good part of the data (end effects removed)
                    goodchunk = chunk[overlap:-overlap]

                    # need to pass blocks/chunklen, localgoodblocks
                    # dm_candlist, dt, opts.threshold to cython routine

                    # Search non-downsampled data first
                    # NOTE:  these nonzero() calls are some of the most
                    #        expensive calls in the program.  Best bet would
                    #        probably be to simply iterate over the goodchunk
                    #        in C and append to the candlist there.
                    hibins = Num.flatnonzero(goodchunk > opts.threshold)
                    hivals = goodchunk[hibins]
                    hibins += chunknum * chunklen
                    hiblocks = hibins / detrendlen
                    # Add the candidates (which are sorted by bin)
                    for bin, val, block in zip(hibins, hivals, hiblocks):
                        if block not in bad_blocks:
                            time = bin * dt
                            dm_candlist.append(
                                candidate(info.DM, val, time, bin, 1))

                    # Prepare our data for the convolution
                    if useffts: fftd_chunk = rfft(chunk, -1)

                    # Now do the downsampling...
                    for ii, downfact in enumerate(downfacts):
                        if useffts:
                            # Note:  FFT convolution is faster for _all_ downfacts, even 2
                            goodchunk = fft_convolve(fftd_chunk,
                                                     fftd_kerns[ii], overlap,
                                                     -overlap)
                        else:
                            # The normalization of this kernel keeps the post-smoothing RMS = 1
                            kernel = Num.ones(downfact, dtype=Num.float32) / \
                                     Num.sqrt(downfact)
                            smoothed_chunk = scipy.signal.convolve(
                                chunk, kernel, 1)
                            goodchunk = smoothed_chunk[overlap:-overlap]
                        #hibins = Num.nonzero(goodchunk>opts.threshold)[0]
                        hibins = Num.flatnonzero(goodchunk > opts.threshold)
                        hivals = goodchunk[hibins]
                        hibins += chunknum * chunklen
                        hiblocks = hibins / detrendlen
                        hibins = hibins.tolist()
                        hivals = hivals.tolist()
                        # Now walk through the new candidates and remove those
                        # that are not the highest but are within downfact/2
                        # bins of a higher signal pulse
                        hibins, hivals = prune_related1(
                            hibins, hivals, downfact)
                        # Insert the new candidates into the candlist, but
                        # keep it sorted...
                        for bin, val, block in zip(hibins, hivals, hiblocks):
                            if block not in bad_blocks:
                                time = bin * dt
                                bisect.insort(
                                    dm_candlist,
                                    candidate(info.DM, val, time, bin,
                                              downfact))

            # Now walk through the dm_candlist and remove the ones that
            # are within the downsample proximity of a higher
            # signal-to-noise pulse
            dm_candlist = prune_related2(dm_candlist, downfacts)
            print "  Found %d pulse candidates" % len(dm_candlist)

            # Get rid of those near padding regions
            if info.breaks: prune_border_cases(dm_candlist, offregions)

            # Write the pulses to an ASCII output file
            if len(dm_candlist):
                #dm_candlist.sort(cmp_sigma)
                outfile.write(
                    "# DM      Sigma      Time (s)     Sample    Downfact\n")
                for cand in dm_candlist:
                    outfile.write(str(cand))
            outfile.close()

            # Add these candidates to the overall candidate list
            for cand in dm_candlist:
                candlist.append(cand)
            num_v_DMstr[DMstr] = len(dm_candlist)

    if (opts.makeplot):

        # Step through the candidates to make a SNR list
        DMs.sort()
        snrs = []
        for cand in candlist:
            snrs.append(cand.sigma)
        if snrs:
            maxsnr = max(int(max(snrs)), int(opts.threshold)) + 3
        else:
            maxsnr = int(opts.threshold) + 3

        # Generate the SNR histogram
        snrs = Num.asarray(snrs)
        (num_v_snr, lo_snr, d_snr, num_out_of_range) = \
                    scipy.stats.histogram(snrs,
                                          int(maxsnr-opts.threshold+1),
                                          [opts.threshold, maxsnr])
        snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \
               + lo_snr + 0.5*d_snr
        num_v_snr = num_v_snr.astype(Num.float32)
        num_v_snr[num_v_snr == 0.0] = 0.001

        # Generate the DM histogram
        num_v_DM = Num.zeros(len(DMs))
        for ii, DM in enumerate(DMs):
            num_v_DM[ii] = num_v_DMstr["%.2f" % DM]
        DMs = Num.asarray(DMs)

        # open the plot device
        short_filenmbase = filenmbase[:filenmbase.find("_DM")]
        if opts.T_end > obstime:
            opts.T_end = obstime
        if pgplot_device:
            ppgplot.pgopen(pgplot_device)
        else:
            if (opts.T_start > 0.0 or opts.T_end < obstime):
                ppgplot.pgopen(short_filenmbase +
                               '_%.0f-%.0fs_singlepulse.ps/VPS' %
                               (opts.T_start, opts.T_end))
            else:
                ppgplot.pgopen(short_filenmbase + '_singlepulse.ps/VPS')
        ppgplot.pgpap(7.5, 1.0)  # Width in inches, aspect

        # plot the SNR histogram
        ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87)
        ppgplot.pgswin(opts.threshold, maxsnr, Num.log10(0.5),
                       Num.log10(2 * max(num_v_snr)))
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses")
        ppgplot.pgsch(1.0)
        ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1)

        # plot the DM histogram
        ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87)
        # Add [1] to num_v_DM in YMAX below so that YMIN != YMAX when max(num_v_DM)==0
        ppgplot.pgswin(
            min(DMs) - 0.5,
            max(DMs) + 0.5, 0.0, 1.1 * max(num_v_DM + [1]))
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses")
        ppgplot.pgsch(1.0)
        ppgplot.pgbin(DMs, num_v_DM, 1)

        # plot the SNR vs DM plot
        ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87)
        ppgplot.pgswin(min(DMs) - 0.5, max(DMs) + 0.5, opts.threshold, maxsnr)
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise")
        ppgplot.pgsch(1.0)
        cand_ts = Num.zeros(len(candlist), dtype=Num.float32)
        cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32)
        cand_DMs = Num.zeros(len(candlist), dtype=Num.float32)
        for ii, cand in enumerate(candlist):
            cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \
                         cand.time, cand.sigma, cand.DM
        ppgplot.pgpt(cand_DMs, cand_SNRs, 20)

        # plot the DM vs Time plot
        ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52)
        ppgplot.pgswin(opts.T_start, opts.T_end,
                       min(DMs) - 0.5,
                       max(DMs) + 0.5)
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
        # Circles are symbols 20-26 in increasing order
        snr_range = 12.0
        cand_symbols = (cand_SNRs - opts.threshold) / snr_range * 6.0 + 20.5
        cand_symbols = cand_symbols.astype(Num.int32)
        cand_symbols[cand_symbols > 26] = 26
        for ii in [26, 25, 24, 23, 22, 21, 20]:
            inds = Num.nonzero(cand_symbols == ii)[0]
            ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii)

        # Now fill the infomation area
        ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97)
        ppgplot.pgsch(1.0)
        ppgplot.pgmtxt('T', 0.5, 0.0, 0.0,
                       "Single pulse results for '%s'" % short_filenmbase)
        ppgplot.pgsch(0.8)
        # first row
        ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\
                       info.object)
        ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):')
        ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA)
        ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f' % orig_N)
        # second row
        ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\
                       info.telescope)
        ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):')
        ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC)
        ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\
                       (orig_dt*1e6))
        # third row
        if info.instrument.find("pigot") >= 0:
            instrument = "Spigot"
        else:
            instrument = info.instrument
        ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s' % instrument)
        if (info.bary):
            ppgplot.pgmtxt('T', -3.7, 0.33, 0.0,
                           'MJD\dbary\u: %.12f' % info.epoch)
        else:
            ppgplot.pgmtxt('T', -3.7, 0.33, 0.0,
                           'MJD\dtopo\u: %.12f' % info.epoch)
        ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\
                       ((info.numchan/2-0.5)*info.chan_width+info.lofreq))
        ppgplot.pgiden()
        ppgplot.pgend()
예제 #14
0
def gotoit():
    nbin = 10
    #c=Cluster()
    #g=Galaxy()
    clusterfile = "clusters.spec.dat"
    print "reading in cluster file to get cluster parameters"
    c.creadfiles(clusterfile)
    print "got ", len(c.z), " clusters"
    c.convarray()
    c.Kcorr()

    go2 = []  #combined arrays containing all galaxies
    gsf = []  #combined arrays containing all galaxies
    gsig5 = []
    gsig10 = []
    gsig52r200 = []  #spec catalogs extended out to 2xR200
    gsig102r200 = []  #spec catalogs extended out to 2xR200
    gsig5phot = []
    gsig10phot = []
    sgo2 = []  #combined arrays containing all galaxies
    sgha = []  #combined arrays containing all galaxies
    sgsf = []  #combined arrays containing all galaxies
    sgsig5 = []
    sgsig10 = []
    sgsig52r200 = []  #spec catalogs extended out to 2xR200
    sgsig102r200 = []  #spec catalogs extended out to 2xR200
    sgsig5phot = []
    sgsig10phot = []

    if (mode < 1):
        c.getsdssphotcats()
        c.getsdssspeccats()

    gr = []  #list of median g-r colors
    psplotinit('summary.ps')
    x1 = .1
    x2 = .45
    x3 = .6
    x4 = .95
    y1 = .15
    y2 = .45
    y3 = .55
    y4 = .85
    ppgplot.pgsch(1.2)  #font size
    ppgplot.pgslw(2)
    #for i in range(len(c.z)):
    cl = [10]
    (xl, xu, yl, yu) = ppgplot.pgqvp(0)
    print "viewport = ", xl, xu, yl, yu
    complall = []
    for i in range(len(c.z)):
        #for i in cl:
        gname = "g" + str(i)
        gname = Galaxy()
        gspecfile = "abell" + str(c.id[i]) + ".spec.dat"
        gname.greadfiles(gspecfile, i)
        print "number of members = ", len(gname.z)
        if len(gname.z) < 10:
            print "less than 10 members", len(gname.z)
            continue
        gname.convarray()
        #gname.cullmembers()
        #gname.getmemb()#get members w/in R200
        #gr.append(N.average(gname.g-gname.r))

        gspec2r200file = "abell" + str(c.id[i]) + ".spec2r200.dat"
        gname.greadspecfiles(gspec2r200file, c.dL[i], c.kcorr[i], i)
        print i, c.id[i], " getnearest, first call", len(gname.ra), len(
            gname.sra), sum(gname.smemb)
        #gname.getnearest(i)
        (gname.sig52r200, gname.sig102r200) = gname.getnearestgen(
            gname.ra, gname.dec, gname.sra, gname.sdec, i
        )  #measure distances from ra1, dec1 to members in catalog ra2, dec2
        sig52r200 = N.compress(gname.memb > 0, gname.sig52r200)
        gsig52r200[len(gsig5phot):] = sig52r200
        sig102r200 = N.compress(gname.memb > 0, gname.sig102r200)
        gsig102r200[len(gsig10phot):] = sig102r200

        gphotfile = "abell" + str(c.id[i]) + ".phot.dat"
        gname.greadphotfiles(gphotfile, c.dL[i], c.kcorr[i])
        gname.getnearest(i)
        #print "len of local density arrays = ",len(gname.sig5),len(gname.sig5phot)
        #print gspecfile, c.z[i],c.kcorr[i]
        (ds5, ds10) = gname.gwritefiles(gspecfile, i)
        o2 = N.compress(gname.memb > 0, gname.o2)
        go2[len(go2):] = o2
        sf = N.compress(gname.memb > 0, gname.sf)
        gsf[len(gsf):] = sf
        sig5 = N.compress(gname.memb > 0, gname.sig5)
        gsig5[len(gsig5):] = sig5
        sig10 = N.compress(gname.memb > 0, gname.sig10)
        gsig10[len(gsig10):] = sig10
        sig5phot = N.compress(gname.memb > 0, gname.sig5phot)
        gsig5phot[len(gsig5phot):] = sig5phot
        sig10phot = N.compress(gname.memb > 0, gname.sig10phot)
        gsig10phot[len(gsig10phot):] = sig10phot

        ds5 = N.array(ds5, 'f')
        ds10 = N.array(ds10, 'f')
        #print len(ds5),len(ds10)
        #ppgplot.pgsvp(xl,xu,yl,yu)
        ppgplot.pgsvp(0.1, .9, .08, .92)
        ppgplot.pgslw(7)
        label = 'Abell ' + str(
            c.id[i]) + ' (z=%5.2f, \gs=%3.0f km/s)' % (c.z[i], c.sigma[i])
        ppgplot.pgtext(0., 1., label)
        ppgplot.pgslw(2)
        ppgplot.pgsvp(x1, x2, y1, y2)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(-1., 3., -1., 3.)  #axes limits
        ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 2)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5,
                       "\gS\d10\u(phot) (gal/Mpc\u2\d)")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "\gS\d10\u(spec) (gal/Mpc\u2\d)")

        x = N.arange(-5., 10., .1)
        y = x
        ppgplot.pgsls(1)  #dotted
        ppgplot.pgslw(4)  #line width
        ppgplot.pgline(x, y)
        x = N.log10(sig10phot)
        y = N.log10(sig10)
        ppgplot.pgsch(.7)
        ppgplot.pgpt(x, y, 17)
        xp = N.array([-0.5], 'f')
        yp = N.array([2.5], 'f')
        ppgplot.pgpt(xp, yp, 17)
        ppgplot.pgtext((xp + .1), yp, 'spec(1.2xR200) vs phot')
        ppgplot.pgsci(4)
        xp = N.array([-0.5], 'f')
        yp = N.array([2.2], 'f')
        ppgplot.pgpt(xp, yp, 21)
        ppgplot.pgtext((xp + .1), yp, 'spec(2xR200) vs phot')

        y = N.log10(sig102r200)

        ppgplot.pgsch(.9)
        ppgplot.pgpt(x, y, 21)
        ppgplot.pgsch(1.2)
        ppgplot.pgslw(2)  #line width
        ppgplot.pgsci(1)

        #ppgplot.pgenv(-200.,200.,-1.,20.,0,0)
        #ppgplot.pgsci(2)
        #ppgplot.pghist(len(ds5),ds5,-200.,200.,30,1)
        #ppgplot.pgsci(4)
        #ppgplot.pghist(len(ds10),ds10,-200.,200.,30,1)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("\gD\gS","Ngal",gspecfile)
        #ppgplot.pgpanl(1,2)
        g = N.compress(gname.memb > 0, gname.g)
        r = N.compress(gname.memb > 0, gname.r)
        V = N.compress(gname.memb > 0, gname.V)
        dmag = N.compress(gname.memb > 0, gname.dmagnearest)
        dnearest = N.compress(gname.memb > 0, gname.nearest)
        dz = N.compress(gname.memb > 0, gname.dz)
        #ppgplot.pgsvp(x3,x4,y1,y2)  #sets viewport
        #ppgplot.pgenv(-.5,3.,-1.,5.,0,0)
        #ppgplot.pgpt((g-V),(g-r),17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("g - M\dV\u",'g-r',gspecfile)
        ppgplot.pgsvp(x1, x2, y3, y4)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(
            (c.ra[i] + 2. * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)),
            (c.ra[i] - 2 * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)),
            (c.dec[i] - 2. * c.r200deg[i]), (c.dec[i] + 2. * c.r200deg[i]))
        ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0,
                      0.0)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "RA")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "Dec")

        #ppgplot.pglab("RA",'Dec',gspecfile)
        ppgplot.pgsfs(2)
        ppgplot.pgcirc(c.ra[i], c.dec[i], c.r200deg[i])
        ppgplot.pgsls(4)
        ppgplot.pgcirc(c.ra[i], c.dec[i], 1.2 * c.r200deg[i])
        ppgplot.pgsls(1)
        #ppgplot.pgcirc(c.ra[i],c.dec[i],c.r200deg[i]/N.cos(c.dec[i]*N.pi/180.))
        ppgplot.pgsci(2)
        ppgplot.pgpt(gname.ra, gname.dec, 17)
        ppgplot.pgsci(4)
        ppgplot.pgpt(gname.photra, gname.photdec, 21)
        ppgplot.pgsci(1)

        #calculate completeness w/in R200

        dspec = N.sqrt((gname.ra - c.ra[i])**2 + (gname.dec - c.dec[i])**2)
        dphot = N.sqrt((gname.photra - c.ra[i])**2 +
                       (gname.photdec - c.dec[i])**2)
        nphot = 1. * len(N.compress(dphot < c.r200deg[i], dphot))
        nspec = 1. * len(N.compress(dspec < c.r200deg[i], dspec))
        s = "Completeness for cluster Abell %s = %6.2f (nspec=%6.1f,nphot= %6.1f)" % (
            str(c.id[i]), float(nspec / nphot), nspec, nphot)
        print s
        complall.append(float(nspec / nphot))
        ppgplot.pgsvp(x3, x4, y3, y4)  #sets viewport
        #ppgplot.pgsvp(x1,x2,y3,y4)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(-0.005, .05, -1., 1.)
        ppgplot.pgbox('bcnst', .02, 2, 'bcvnst', 1, 4)  #tickmarks and labeling
        ppgplot.pgsch(1.0)
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5,
                       "Dist to nearest phot neighbor (deg)")  #xlabel
        ppgplot.pgsch(1.2)
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)')
        ppgplot.pgsci(2)
        ppgplot.pgpt(dnearest, dmag, 17)
        ppgplot.pgsci(1)
        x = N.arange(-30., 30., 1.)
        y = 0 * x
        ppgplot.pgsci(1)
        ppgplot.pgsls(2)
        ppgplot.pgline(x, y)
        ppgplot.pgsls(1)
        ppgplot.pgsci(1)
        dm = N.compress(dnearest < 0.01, dmag)
        std = '%5.3f (%5.3f)' % (pylab.mean(dm), pylab.std(dm))
        #ppgplot.pgslw(7)
        #label='Abell '+str(c.id[i])
        #ppgplot.pgtext(0.,1.,label)
        ppgplot.pgslw(2)
        label = '\gDM\dV\u(err) = ' + std
        ppgplot.pgsch(.9)
        ppgplot.pgtext(0., .8, label)
        #label = "z = %5.2f"%(c.z[i])
        #ppgplot.pgtext(0.,.8,label)
        ppgplot.pgsch(1.2)
        #ppgplot.pgsvp(x3,x4,y3,y4)  #sets viewport
        #ppgplot.pgenv(-.15,.15,-3.,3.,0,0)
        #ppgplot.pgsci(2)
        #ppgplot.pgpt(dz,dmag,17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("z-z\dcl\u",'\gD Mag',gspecfile)
        ppgplot.pgsvp(x3, x4, y1, y2)  #sets viewport
        ppgplot.pgswin(-3., 3., -1., 1.)
        ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 4)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gDv/\gs")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)')

        ppgplot.pgsci(2)
        dv = dz / (1 + c.z[i]) * 3.e5 / c.sigma[i]
        ppgplot.pgpt(dv, dmag, 17)
        ppgplot.pgsci(1)
        x = N.arange(-30., 30., 1.)
        y = 0 * x
        ppgplot.pgsci(1)
        ppgplot.pgsls(2)
        ppgplot.pgline(x, y)
        ppgplot.pgsls(1)
        ppgplot.pgsci(1)
        #ppgplot.pgsvp(x1,x2,y1,y2)  #sets viewport
        #ppgplot.pgenv(0.,3.5,-3.,3.,0,0)
        #ppgplot.pgsci(4)
        #ppgplot.pgpt((g-r),dmag,17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("g-r",'\gD Mag',gspecfile)

        #ppgplot.pgsvp(x1,x2,y1,y2)  #sets viewport
        #ppgplot.pgenv(-25.,-18.,-1.,1.,0,0)
        #ppgplot.pgsci(4)
        #ppgplot.pgpt((V),dmag,17)
        #x=N.arange(-30.,30.,1.)
        #y=0*x
        #ppgplot.pgsci(1)
        #ppgplot.pgsls(2)
        #ppgplot.pgline(x,y)
        #ppgplot.pgsls(1)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("M\dV\u(spec)",'M\dV\u(phot) - M\dV\u(spec)',gspecfile)
        #ppgplot.pgpage()
        #ppgplot.pgpage()
        #combine galaxy data
        ppgplot.pgpage()

        (sssig5,
         sssig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.sra,
                                        gname.sdec,
                                        i)  #get spec-spec local density
        (spsig5,
         spsig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.photra,
                                        gname.photdec,
                                        i)  #get spec-phot local density

        o2 = N.compress(gname.smemb > 0, gname.so2)
        sgo2[len(sgo2):] = o2
        ha = N.compress(gname.smemb > 0, gname.sha)
        sgha[len(sgha):] = ha
        sf = N.compress(gname.smemb > 0, gname.ssf)
        sgsf[len(sgsf):] = sf
        sig5 = N.compress(gname.smemb > 0, sssig5)
        sgsig5[len(sgsig5):] = sig5
        sig10 = N.compress(gname.smemb > 0, sssig10)
        sgsig10[len(sgsig10):] = sig10
        sig5phot = N.compress(gname.smemb > 0, spsig5)
        sgsig5phot[len(sgsig5phot):] = sig5phot
        sig10phot = N.compress(gname.smemb > 0, spsig10)
        sgsig10phot[len(sgsig10phot):] = sig10phot

    #gr=N.array(gr,'f')
    #c.assigncolor(gr)

    #for i in range(len(c.z)):
    #    print c.id[i],c.z[i],c.r200[i],c.r200deg[i]

    print "Average Completeness w/in R200 = ", N.average(N.array(
        complall, 'f'))
    print "sig o2", len(gsig10), len(gsig10phot), len(go2)
    print "sig o2 large", len(sgsig10), len(sgsig10phot), len(sgo2)
    plotsigo2all(gsig10, gsig10phot, go2, 'o2vsig10spec', nbin)
    #plotsigo2(gsig5phot,-1*go2,'o2vsig5phot',nbin)
    plotsigsff(gsig5, gsf, 'sffvsig5spec', nbin)  #sf frac versus sigma
    plotsigsff(gsig5phot, gsf, 'sffvsig5phot', nbin)  #sf frac versus sigma
    plotsigsffall(gsig5, gsig5phot, gsf, 'sffvsig5all',
                  nbin)  #sf frac versus sigma
    plotsig10sffall(gsig10, gsig10phot, gsf, 'sffvsig10all',
                    nbin)  #sf frac versus sigma
    #plotsighaall(gsig10,gsig10phot,gha,'havsig10spec',20)
    #plotsigo2all(sgsig10,sgsig10phot,sgo2,'o2vsig10spec.large',30)
    plotsighaall(sgsig10, sgsig10phot, sgha, 'havsig10spec.large', 10)
    #plotsigsffall(sgsig5,sgsig5phot,sgsf,'sffvsig5.large',nbin)#sf frac versus sigma
    #plotsig10sffall(sgsig10,sgsig10phot,sgsf,'sffvsig10.large',nbin)#sf frac versus sigma
    psplotinit('one2one.ps')
    ppgplot.pgenv(-1.5, 2.5, -1.5, 2.5, 0)
    ppgplot.pglab("\gS\d10\u(phot) (gal/Mpc\u2\d)",
                  "\gS\d10\u(spec) (gal/Mpc\u2\d)", "")
    x = N.arange(-5., 10., .1)
    y = x
    ppgplot.pgsls(1)  #dotted
    ppgplot.pgslw(4)  #line width
    ppgplot.pgline(x, y)
    x = N.log10(gsig10phot)
    y = N.log10(gsig10)
    ppgplot.pgsch(.7)
    ppgplot.pgpt(x, y, 17)
    ppgplot.pgsch(1.)
    ppgplot.pgsci(1)
    ppgplot.pgend()
예제 #15
0
            ppgplot.pgrect(-1.5 * m.w, 1.5 * m.w, -m.w, m.w)
            ppgplot.pgsci(1)
            ppgplot.pgsch(1.0)
            ppgplot.pgbox("BC", 0., 0, "BC", 0., 0)
            ppgplot.pgpt1(0., 0., 2)

            # Plot field-of-view
            ppgplot.pgsfs(2)
            ppgplot.pgrect(-m.fw, m.fw, -m.fh, m.fh)
            ppgplot.pgsfs(1)

            # Top left string
            ppgplot.pgsch(0.8)
            text = "%s UTC; %s (%04d) [%+.4f\\u\\(2218)\\d, %+.4f\\u\\(2218)\\d, %.0fm]" % (
                m.t.isot, m.observer, m.site, m.lat, m.lon, m.elev)
            ppgplot.pgmtxt("T", 0.6, 0., 0., text)

            # Bottom string
            sra = m.ra.to_string(sep=":",
                                 unit="hourangle",
                                 pad=True,
                                 precision=2)
            sdec = m.dec.to_string(sep=":", unit="deg", pad=True, precision=1)
            text = "R: %s; D: %s; A: %.1f; E: %.1f; q: %.2f; S: %.1fx%.1f deg; " % (
                sra, sdec, m.az, m.alt, m.q, 3.0 * m.w, 2.0 * m.w)
            text = text + "L: %d; O: %s; m < %.1f; C: %s; l: %.0f s" % (
                m.level, m.orientation, m.maxmag, m.camera, m.length)
            ppgplot.pgmtxt("B", 1.0, 0.0, 0.0, text)
            ppgplot.pgsch(1.0)

            # Plot stars
예제 #16
0
ppgplot.pgpage()

# Give z and w values and power change
ppgplot.pgsvp(margin+imfract, 1.0-margin/2, margin+imfract, 1.0-margin/2)
ppgplot.pgswin(0.0, 1.0, 0.0, 1.0)
ppgplot.pgtext(0.1, 0.8, "Frac Recovered" % frp)
ppgplot.pgtext(0.2, 0.65, "Power = %.3f" % frp)
ppgplot.pgtext(0.1, 0.4, "signal z = %.1f" % z)
ppgplot.pgtext(0.1, 0.25, "signal w = %.1f" % w)

# freq cut
ppgplot.pgsvp(margin, margin+imfract, margin+imfract, 1.0-margin/2)
ppgplot.pgswin(min(rs), max(rs), -0.1, 1.1)
ppgplot.pgbox("BCST", 0.0, 0, "BCNST", 0.0, 0)
ppgplot.pgline(rs, freqcut)
ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, "Relative Power");

#fdot cut
ppgplot.pgsvp(margin+imfract, 1.0-margin/2, margin, margin+imfract)
ppgplot.pgswin(-0.1, 1.1, min(zs), max(zs))
ppgplot.pgbox("BCNST", 0.0, 0, "BCST", 0.0, 0)
ppgplot.pgline(fdotcut, zs)
ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, "Relative Power");

# f-fdot image
ppgplot.pgsvp(margin, margin+imfract, margin, margin+imfract)
ppgplot.pgswin(min(rs), max(rs), min(zs), max(zs))
ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, labx);
ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, laby);
lo_col_ind, hi_col_ind = ppgplot.pgqcol()
lo_col_ind = lo_col_ind + 2
def main(args):
    with open(os.path.join(os.path.dirname(__file__),
        'precisiondata.cpickle')) as filedata:
        exptimes, crosspoints, satpoints = pickle.load(filedata)

    x_range = [9, 14]

    interpcross = interp1d(exptimes, crosspoints, kind='linear')
    interpsat = interp1d(exptimes, satpoints, kind='linear')


    N = 5
    colours = np.arange(2, 2 + N, 1)
    exptimes = np.arange(1, N + 1) * 10
    if args.besancon:
        all_vmags = get_besancon_mag_data()
        yhigh = 0.3
        title = 'Besancon'
    else:
        all_vmags = get_nomad_mag_data()
        yhigh = 0.4
        title = 'NOMAD'

    ytot = yhigh * len(all_vmags)


    with pgh.open_plot(args.output):

        pg.pgvstd()


        pg.pgswin(x_range[0], x_range[1], 0, yhigh)
        for exptime, colour in zip(exptimes, colours):
            satpoint = interpsat(exptime)
            crosspoint = interpcross(exptime)

            selected = all_vmags[(all_vmags > satpoint) & (all_vmags <=
                crosspoint)]
            print(exptime, len(selected))


            xdata, ydata = cumulative_hist(np.array(selected),
                    min_val=x_range[0], max_val=x_range[1], norm=len(all_vmags))
            ydata /= float(len(all_vmags))

            with pgh.change_colour(colour):
                pg.pgbin(xdata, ydata, False)


        pg.pgbox('bcnst', 0, 0, 'bcnst', 0, 0)
        pg.pglab(r'V magnitude', 'High precision fraction', title)
        # Label the right hand side
        pg.pgswin(x_range[0], x_range[1], 0, ytot)
        pg.pgbox('', 0, 0, 'smt', 0, 0)
        pg.pgmtxt('r', 2., 0.5, 0.5, 'N')

        # Create the legend
        pg.pgsvp(0.7, 0.9, 0.1, 0.3)
        pg.pgswin(0., 1., 0., 1.)

        for i, (exptime, colour) in enumerate(zip(exptimes, colours)):
            yval = 0.1 + 0.8 * i / len(exptimes)

            with pgh.change_colour(colour):
                pg.pgline(np.array([0.2, 0.4]), np.ones(2) * yval)

            pg.pgtext(0.5, yval, r'{:d} s'.format(exptime))
예제 #18
0
파일: ps.py 프로젝트: rfinn/pythonCode
def mratiopg():
    ppgplot.pgbeg("maccratio.ps/vcps",1,1)  #color port.
    ppgplot.pgpap(8.,1.)
    ppgplot.pgpage
    ppgplot.pgsch(1.3) #font size
    ppgplot.pgslw(7)   #line width

    # 1st panel with symbols w/ stddev errorbars
    #ylabel="SFR (M\d\(2281) \u yr\u-1\d)"
    ylabel="L(H\ga) (10\u41\d  erg s\u-1\d)"
    xlabel="M\dr\u "
    x1=.15
    x2=.5
    x3=.5
    x4=.85
    y1=x1
    y2=x2
    y3=x3
    y4=x4
    emarker=18
    smarker=23
    xmin=N.log10(1.e14)
    xmax=N.log10(2.5e15)
    #ymin=-1.
    #ymax=3.
    ymin=0.
    ymax=25.
    ppgplot.pgsvp(x1,x4,y1,y4)  #sets viewport
    ppgplot.pgswin(xmin,xmax,ymin,ymax) #axes limits
    ppgplot.pgbox('blncst',1.,2,'bcvnst',2.,2)  #tickmarks and labeling


    for i in range(len(lz1lm.mass)):
	m=lz1lm.mass[i]
	l=lz1lm.maccret[i]
	h=hz1lm.maccret[i]
	r=h/l
	print i,m,l,h,r
    #print lz1lm.maccret
    #print hz1lm.maccret
    #print hz3lm.maccret
    r3lm=(hz3lm.maccret)/(lz3lm.maccret)
    r3hm=(hz3hm.maccret)/(lz3hm.maccret)
    #for i in range(len(r3)):
#	print i,lz3.sigma[i],hz3.sigma[i],lz3.mass[i],hz3.mass[i]
#	print i,lz01.sigma[i],hz01.sigma[i],lz01.mass[i],hz01.mass[i]
    r1lm=hz1lm.maccret/lz1lm.maccret
    r1hm=hz1hm.maccret/lz1hm.maccret
    #ra=N.array(hz01.maccret,'d')
    #rb=N.array(lz01.maccret,'d')
    #r01=ra/rb
    #for i in range(len(r01)):
	#print "ratio ",hz01.maccret[i],lz01.maccret[i],ra[i],rb[i],r01[i]
    ppgplot.pgsci(14)
    ppgplot.pgsls(1)
    ppgplot.pgline(N.log10(lz3lm.mass),r3lm)
    ppgplot.pgsls(2)
    ppgplot.pgline(N.log10(lz3hm.mass),r3hm)

    ppgplot.pgsci(1)
    ppgplot.pgsls(1)
    ppgplot.pgline(N.log10(lz1lm.mass),r1lm)
    ppgplot.pgsls(2)
    ppgplot.pgline(N.log10(lz1hm.mass),r1hm)

    xlabel='M\dcl\u (M\d\(2281)\u)'
    ylabel='M\dacc\u(z=0.75) / M\dacc\u(z=0.07)'

    ppgplot.pgsch(1.8)
    ppgplot.pgslw(7)
    ppgplot.pgmtxt('b',2.2,0.5,0.5,ylabel)    #xlabel
    ppgplot.pgmtxt('l',2.5,0.5,0.5,xlabel)

    ppgplot.pgend()
예제 #19
0
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin):
    # Read four frame
    ff = fourframe(fname)

    # Skip saturated frames
    if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95:
        return

    # Read satelite IDs
    try:
        f = open(fname + ".id")
    except OSError:
        print("Cannot open", fname + ".id")
    else:
        lines = f.readlines()
        f.close()

    # ppgplot arrays
    tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0])
    heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0])
    heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0])
    heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0])
    heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0])

    # Loop over identifications
    for line in lines:
        # Decode
        id = satid(line)

        # Skip slow moving objects
        drdt = np.sqrt(id.dxdt**2 + id.dydt**2)
        if drdt < drdtmin:
            continue

        # Extract significant pixels
        x, y, t, sig = ff.significant(trksig, id.x0, id.y0, id.dxdt, id.dydt,
                                      trkrmin)

        # Fit tracks
        if len(t) > ntrkmin:
            # Get times
            tmin = np.min(t)
            tmax = np.max(t)
            tmid = 0.5 * (tmax + tmin)
            mjd = ff.mjd + tmid / 86400.0

            # Skip if no variance in time
            if np.std(t - tmid) == 0.0:
                continue

            # Very simple polynomial fit; no weighting, no cleaning
            px = np.polyfit(t - tmid, x, 1)
            py = np.polyfit(t - tmid, y, 1)

            # Extract results
            x0, y0 = px[1], py[1]
            dxdt, dydt = px[0], py[0]
            xmin = x0 + dxdt * (tmin - tmid)
            ymin = y0 + dydt * (tmin - tmid)
            xmax = x0 + dxdt * (tmax - tmid)
            ymax = y0 + dydt * (tmax - tmid)

            cospar = get_cospar(id.norad)
            obs = observation(ff, mjd, x0, y0)
            iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id,
                                              obs.nfd, obs.ra, obs.de)

            print(iod_line)

            if id.catalog.find("classfd.tle") > 0:
                outfname = "classfd.dat"
            elif id.catalog.find("inttles.tle") > 0:
                outfname = "inttles.dat"
            else:
                outfname = "catalog.dat"

            f = open(outfname, "a")
            f.write("%s\n" % iod_line)
            f.close()

            # Plot
            ppgplot.pgopen(
                fname.replace(".fits", "") + "_%05d.png/png" % id.norad)
            #ppgplot.pgopen("/xs")
            ppgplot.pgpap(0.0, 1.0)
            ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8)

            ppgplot.pgsch(0.8)
            ppgplot.pgmtxt(
                "T", 6.0, 0.0, 0.0,
                "UT Date: %.23s  COSPAR ID: %04d" % (ff.nfd, ff.site_id))
            if (3600.0 * ff.crres[0] < 1e-3
                ) | (3600.0 * ff.crres[1] < 1e-3) | (
                    ff.crres[0] / ff.sx > 2.0) | (ff.crres[1] / ff.sy > 2.0):
                ppgplot.pgsci(2)
            else:
                ppgplot.pgsci(1)
            ppgplot.pgmtxt(
                "T", 4.8, 0.0, 0.0,
                "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" %
                (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1],
                 3600.0 * ff.crres[1]))
            ppgplot.pgsci(1)
            ppgplot.pgmtxt(
                "T", 3.6, 0.0, 0.0,
                "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d"
                % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy))
            ppgplot.pgmtxt(
                "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" %
                (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax))
            ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line)

            ppgplot.pgsch(1.0)
            ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny)
            ppgplot.pglab("x (pix)", "y (pix)", " ")
            ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)

            ppgplot.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1,
                           ff.vmax, ff.vmin, tr)
            ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0)
            ppgplot.pgstbg(1)

            ppgplot.pgsci(0)
            if id.catalog.find("classfd.tle") > 0:
                ppgplot.pgsci(4)
            elif id.catalog.find("inttles.tle") > 0:
                ppgplot.pgsci(3)
            ppgplot.pgpt(np.array([x0]), np.array([y0]), 4)
            ppgplot.pgmove(xmin, ymin)
            ppgplot.pgdraw(xmax, ymax)
            ppgplot.pgsch(0.65)
            ppgplot.pgtext(np.array([x0]), np.array([y0]), " %05d" % id.norad)
            ppgplot.pgsch(1.0)
            ppgplot.pgsci(1)

            ppgplot.pgend()

        elif id.catalog.find("classfd.tle") > 0:
            # Track and stack
            t = np.linspace(0.0, ff.texp)
            x, y = id.x0 + id.dxdt * t, id.y0 + id.dydt * t
            c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny)

            # Skip if no points selected
            if np.sum(c) == 0:
                continue

            # Compute track
            tmid = np.mean(t[c])
            mjd = ff.mjd + tmid / 86400.0
            xmid = id.x0 + id.dxdt * tmid
            ymid = id.y0 + id.dydt * tmid
            ztrk = ndimage.gaussian_filter(ff.track(id.dxdt, id.dydt, tmid),
                                           1.0)
            vmin = np.mean(ztrk) - 2.0 * np.std(ztrk)
            vmax = np.mean(ztrk) + 6.0 * np.std(ztrk)

            # Select region
            xmin = int(xmid - 100)
            xmax = int(xmid + 100)
            ymin = int(ymid - 100)
            ymax = int(ymid + 100)
            if xmin < 0: xmin = 0
            if ymin < 0: ymin = 0
            if xmax > ff.nx: xmax = ff.nx - 1
            if ymax > ff.ny: ymax = ff.ny - 1

            # Find peak
            x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax])
            x0 += xmin
            y0 += ymin

            # Skip if peak is not significant
            if sigma < trksig:
                continue

            # Skip if point is outside selection area
            if inside_selection(id, xmid, ymid, x0, y0) == False:
                continue

            # Format IOD line
            cospar = get_cospar(id.norad)
            obs = observation(ff, mjd, x0, y0)
            iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id,
                                              obs.nfd, obs.ra, obs.de)

            print(iod_line)

            if id.catalog.find("classfd.tle") > 0:
                outfname = "classfd.dat"
            elif id.catalog.find("inttles.tle") > 0:
                outfname = "inttles.dat"
            else:
                outfname = "catalog.dat"

            f = open(outfname, "a")
            f.write("%s\n" % iod_line)
            f.close()

            # Plot
            ppgplot.pgopen(
                fname.replace(".fits", "") + "_%05d.png/png" % id.norad)
            ppgplot.pgpap(0.0, 1.0)
            ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8)

            ppgplot.pgsch(0.8)
            ppgplot.pgmtxt(
                "T", 6.0, 0.0, 0.0,
                "UT Date: %.23s  COSPAR ID: %04d" % (ff.nfd, ff.site_id))
            ppgplot.pgmtxt(
                "T", 4.8, 0.0, 0.0,
                "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" %
                (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1],
                 3600.0 * ff.crres[1]))
            ppgplot.pgmtxt(
                "T", 3.6, 0.0, 0.0,
                "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d"
                % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy))
            ppgplot.pgmtxt(
                "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" %
                (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax))
            ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line)

            ppgplot.pgsch(1.0)
            ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny)
            ppgplot.pglab("x (pix)", "y (pix)", " ")
            ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)

            ppgplot.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1,
                           vmax, vmin, tr)
            ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0)
            ppgplot.pgstbg(1)

            plot_selection(id, xmid, ymid)

            ppgplot.pgsci(0)
            if id.catalog.find("classfd.tle") > 0:
                ppgplot.pgsci(4)
            elif id.catalog.find("inttles.tle") > 0:
                ppgplot.pgsci(3)
            ppgplot.pgpt(np.array([id.x0]), np.array([id.y0]), 17)
            ppgplot.pgmove(id.x0, id.y0)
            ppgplot.pgdraw(id.x1, id.y1)
            ppgplot.pgpt(np.array([x0]), np.array([y0]), 4)
            ppgplot.pgsch(0.65)
            ppgplot.pgtext(np.array([id.x0]), np.array([id.y0]),
                           " %05d" % id.norad)
            ppgplot.pgsch(1.0)
            ppgplot.pgsci(1)

            ppgplot.pgend()
예제 #20
0
파일: Pgplot.py 프로젝트: bretonr/presto
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \
             rangex2=None, rangey2=None, labx2=None, laby2=None, \
             logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \
             fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \
             panels=[1,1], device=ppgplot_device_):
    """
    prepplot(rangex, rangey, ...)
        Open a PGPLOT device for plotting.
            'rangex' and 'rangey' are sequence objects giving min and
                max values for each axis.
        The optional entries are:
            title:    graph title                 (default = None)   
            labx:     label for the x-axis        (default = None)   
            laby:     label for the y-axis        (default = None)   
            rangex2:  ranges for 2nd x-axis       (default = None)   
            rangey2:  ranges for 2nd y-axis       (default = None)   
            labx2:    label for the 2nd x-axis    (default = None)   
            laby2:    label for the 2nd y-axis    (default = None)   
            logx:     make the 1st x-axis log     (default = 0 (no))
            logy:     make the 1st y-axis log     (default = 0 (no))
            logx2:    make the 2nd x-axis log     (default = 0 (no))
            logy2:    make the 2nd y-axis log     (default = 0 (no))
            font:     PGPLOT font to use          (default = 1 (normal))
            fontsize: PGPLOT font size to use     (default = 1.0 (normal))
            id:       Show ID line on plot        (default = 0 (no)) 
            aspect:   Aspect ratio                (default = 1 (square))
            ticks:    Ticks point in or out       (default = 'in')   
            panels:   Number of subpanels [r,c]   (default = [1,1])
            device:   PGPLOT device to use        (default = '/XWIN')
        Note:  Many default values are defined in global variables
            with names like ppgplot_font_ or ppgplot_device_.
    """
    global ppgplot_dev_open_, ppgplot_dev_prep_
    # Check if we will use second X or Y axes
    # Note:  if using a 2nd X axis, the range should correspond
    #   to the minimum and maximum values of the 1st X axis.  If
    #   using a 2nd Y axis, the range should correspond to the
    #   scalerange() values of the 1st Y axis.
    if rangex2 is None:
        rangex2=rangex
        otherxaxis=0
    else: otherxaxis=1
    if rangey2 is None:
        rangey2=rangey
        otheryaxis=0
    else: otheryaxis=1
    # Open the plot device
    if (not ppgplot_dev_open_):
        ppgplot.pgopen(device)
	# My little add-on to switch the background to white
	if device == '/XWIN':
	    reset_colors()
	if device == '/AQT':
	    ppgplot.pgsci(0)
        # Let the routines know that we already have a device open
        ppgplot_dev_open_ = 1
        # Set the aspect ratio
        ppgplot.pgpap(0.0, aspect)
        if (panels != [1,1]):
            # Set the number of panels
            ppgplot.pgsubp(panels[0], panels[1])
            ppgplot.pgpage()
    # Choose the font  
    ppgplot.pgscf(font)
    # Choose the font size
    ppgplot.pgsch(fontsize)
    # Choose the font size
    ppgplot.pgslw(ppgplot_linewidth_)
    # Plot the 2nd axis if needed first
    if otherxaxis or otheryaxis:
        ppgplot.pgvstd()
        ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1])
        # Decide how the axes will be drawn
        if ticks=='in': env = "CMST"
        else: env = "CMSTI"
        if logx2: lxenv='L'
        else: lxenv=''
        if logy2: lyenv='L'
        else: lyenv=''
        if otherxaxis and otheryaxis:
            ppgplot.pgbox(env+lxenv, 0.0, 0, env+lyenv, 0.0, 0)
        elif otheryaxis:
            ppgplot.pgbox("", 0.0, 0, env+lyenv, 0.0, 0)
        else:
            ppgplot.pgbox(env+lxenv, 0.0, 0, "", 0.0, 0)
    # Now setup the primary axis
    ppgplot.pgvstd()
    ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1])
    # Decide how the axes will be drawn
    if ticks=='in': env = "ST"
    else: env = "STI"
    if logx: lxenv='L'
    else: lxenv=''
    if logy: lyenv='L'
    else: lyenv=''
    if otherxaxis and otheryaxis:
        ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0)
    elif otheryaxis:
        ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0)
    elif otherxaxis:
        ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0)
    else:
        ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0)
    # My little add-on to switch the background to white
    if device == '/AQT' or device == '/XWIN':
	reset_colors()
    # Add labels
    if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title)
    ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx)
    ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby)
    if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2)
    if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2)
    # Add ID line if required
    if (id==1): ppgplot.pgiden()
    # Let the routines know that we have already prepped the device
    ppgplot_dev_prep_ = 1
예제 #21
0
def main():
    parser = OptionParser(usage)
    parser.add_option("-x", "--xwin", action="store_true", dest="xwin",
                      default=False, help="Don't make a postscript plot, just use an X-window")
    parser.add_option("-p", "--noplot", action="store_false", dest="makeplot",
                      default=True, help="Look for pulses but do not generate a plot")
    parser.add_option("-m", "--maxwidth", type="float", dest="maxwidth", default=0.0,
                      help="Set the max downsampling in sec (see below for default)")
    parser.add_option("-t", "--threshold", type="float", dest="threshold", default=5.0,
                      help="Set a different threshold SNR (default=5.0)")
    parser.add_option("-s", "--start", type="float", dest="T_start", default=0.0,
                      help="Only plot events occuring after this time (s)")
    parser.add_option("-e", "--end", type="float", dest="T_end", default=1e9,
                      help="Only plot events occuring before this time (s)")
    parser.add_option("-g", "--glob", type="string", dest="globexp", default=None,
                      help="Process the files from this glob expression")
    parser.add_option("-f", "--fast", action="store_true", dest="fast",
                      default=False, help="Use a faster method of de-trending (2x speedup)")
    parser.add_option("-b", "--nobadblocks", action="store_false", dest="badblocks",
                      default=True, help="Don't check for bad-blocks (may save strong pulses)")
    parser.add_option("-d", "--detrendlen", type="int", dest="detrendfact", default=1,
                      help="Chunksize for detrending (pow-of-2 in 1000s)")
    (opts, args) = parser.parse_args()
    if len(args)==0:
        if opts.globexp==None:
            print full_usage
            sys.exit(0)
        else:
            args = []
            for globexp in opts.globexp.split():
                args += glob.glob(globexp)
    useffts = True
    dosearch = True
    if opts.xwin:
        pgplot_device = "/XWIN"
    else:
        pgplot_device = ""

    fftlen = 8192     # Should be a power-of-two for best speed
    chunklen = 8000   # Must be at least max_downfact less than fftlen
    assert(opts.detrendfact in [1,2,4,8,16,32])
    detrendlen = opts.detrendfact*1000
    if (detrendlen > chunklen):
        chunklen = detrendlen
        fftlen = int(next2_to_n(chunklen))
    blocks_per_chunk = chunklen / detrendlen
    overlap = (fftlen - chunklen)/2
    worklen = chunklen + 2*overlap  # currently it is fftlen...

    max_downfact = 30
    default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150, 220, 300]

    if args[0].endswith(".singlepulse"):
        filenmbase = args[0][:args[0].rfind(".singlepulse")]
        dosearch = False
    elif args[0].endswith(".dat"):
        filenmbase = args[0][:args[0].rfind(".dat")]
    else:
        filenmbase = args[0]

    # Don't do a search, just read results and plot
    if not dosearch:
        info, DMs, candlist, num_v_DMstr = \
              read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end)
        orig_N, orig_dt = int(info.N), info.dt
        obstime = orig_N * orig_dt
    else:
        DMs = []
        candlist = []
        num_v_DMstr = {}

        # Loop over the input files
        for filenm in args:
            if filenm.endswith(".dat"):
                filenmbase = filenm[:filenm.rfind(".dat")]
            else:
                filenmbase = filenm
            info = infodata.infodata(filenmbase+".inf")
            DMstr = "%.2f"%info.DM
            DMs.append(info.DM)
            N, dt = int(info.N), info.dt
            obstime = N * dt
            # Choose the maximum width to search based on time instead
            # of bins.  This helps prevent increased S/N when the downsampling
            # changes as the DM gets larger.
            if opts.maxwidth > 0.0:
                downfacts = [x for x in default_downfacts if x*dt <= opts.maxwidth]
            else:
                downfacts = [x for x in default_downfacts if x <= max_downfact]
            if len(downfacts) == 0:
                downfacts = [default_downfacts[0]]
            if (filenm == args[0]):
                orig_N = N
                orig_dt = dt

            if info.breaks:
                offregions = zip([x[1] for x in info.onoff[:-1]],
                                 [x[0] for x in info.onoff[1:]])

                # If last break spans to end of file, don't read it in (its just padding)
                if offregions[-1][1] == N - 1:
                    N = offregions[-1][0] + 1

            outfile = open(filenmbase+'.singlepulse', mode='w')

            # Compute the file length in detrendlens
            roundN = N/detrendlen * detrendlen
            numchunks = roundN / chunklen
            # Read in the file
            print 'Reading "%s"...'%filenm
            timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN)
            # Split the timeseries into chunks for detrending
            numblocks = roundN/detrendlen
            timeseries.shape = (numblocks, detrendlen)
            stds = Num.zeros(numblocks, dtype=Num.float64)
            # de-trend the data one chunk at a time
            print '  De-trending the data and computing statistics...'
            for ii, chunk in enumerate(timeseries):
                if opts.fast:  # use median removal instead of detrending (2x speedup)
                    tmpchunk = chunk.copy()
                    tmpchunk.sort()
                    med = tmpchunk[detrendlen/2]
                    chunk -= med
                    tmpchunk -= med
                else:
                    # The detrend calls are the most expensive in the program
                    timeseries[ii] = scipy.signal.detrend(chunk, type='linear')
                    tmpchunk = timeseries[ii].copy()
                    tmpchunk.sort()
                # The following gets rid of (hopefully) most of the 
                # outlying values (i.e. power dropouts and single pulses)
                # If you throw out 5% (2.5% at bottom and 2.5% at top)
                # of random gaussian deviates, the measured stdev is ~0.871
                # of the true stdev.  Thus the 1.0/0.871=1.148 correction below.
                # The following is roughly .std() since we already removed the median
                stds[ii] = Num.sqrt((tmpchunk[detrendlen/40:-detrendlen/40]**2.0).sum() /
                                    (0.95*detrendlen))
            stds *= 1.148
            # sort the standard deviations and separate those with
            # very low or very high values
            sort_stds = stds.copy()
            sort_stds.sort()
            # identify the differences with the larges values (this
            # will split off the chunks with very low and very high stds
            locut = (sort_stds[1:numblocks/2+1] -
                     sort_stds[:numblocks/2]).argmax() + 1
            hicut = (sort_stds[numblocks/2+1:] -
                     sort_stds[numblocks/2:-1]).argmax() + numblocks/2 - 2
            std_stds = scipy.std(sort_stds[locut:hicut])
            median_stds = sort_stds[(locut+hicut)/2]
            print "    pseudo-median block standard deviation = %.2f" % (median_stds)
            if (opts.badblocks):
                lo_std = median_stds - 4.0 * std_stds
                hi_std = median_stds + 4.0 * std_stds
                # Determine a list of "bad" chunks.  We will not search these.
                bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0]
                print "    identified %d bad blocks out of %d (i.e. %.2f%%)" % \
                      (len(bad_blocks), len(stds),
                       100.0*float(len(bad_blocks))/float(len(stds)))
                stds[bad_blocks] = median_stds
            else:
                bad_blocks = []
            print "  Now searching..."

            # Now normalize all of the data and reshape it to 1-D
            timeseries /= stds[:,Num.newaxis]
            timeseries.shape = (roundN,)
            # And set the data in the bad blocks to zeros
            # Even though we don't search these parts, it is important
            # because of the overlaps for the convolutions
            for bad_block in bad_blocks:
                loind, hiind = bad_block*detrendlen, (bad_block+1)*detrendlen
                timeseries[loind:hiind] = 0.0
            # Convert to a set for faster lookups below
            bad_blocks = set(bad_blocks)

            # Step through the data
            dm_candlist = []
            for chunknum in xrange(numchunks):
                loind = chunknum*chunklen-overlap
                hiind = (chunknum+1)*chunklen+overlap
                # Take care of beginning and end of file overlap issues
                if (chunknum==0): # Beginning of file
                    chunk = Num.zeros(worklen, dtype=Num.float32)
                    chunk[overlap:] = timeseries[loind+overlap:hiind]
                elif (chunknum==numchunks-1): # end of the timeseries
                    chunk = Num.zeros(worklen, dtype=Num.float32)
                    chunk[:-overlap] = timeseries[loind:hiind-overlap]
                else:
                    chunk = timeseries[loind:hiind]

                # Make a set with the current block numbers
                lowblock = blocks_per_chunk * chunknum
                currentblocks = set(Num.arange(blocks_per_chunk) + lowblock)
                localgoodblocks = Num.asarray(list(currentblocks -
                                                   bad_blocks)) - lowblock
                # Search this chunk if it is not all bad
                if len(localgoodblocks):
                    # This is the good part of the data (end effects removed)
                    goodchunk = chunk[overlap:-overlap]

                    # need to pass blocks/chunklen, localgoodblocks
                    # dm_candlist, dt, opts.threshold to cython routine

                    # Search non-downsampled data first
                    # NOTE:  these nonzero() calls are some of the most
                    #        expensive calls in the program.  Best bet would 
                    #        probably be to simply iterate over the goodchunk
                    #        in C and append to the candlist there.
                    hibins = Num.flatnonzero(goodchunk>opts.threshold)
                    hivals = goodchunk[hibins]
                    hibins += chunknum * chunklen
                    hiblocks = hibins/detrendlen
                    # Add the candidates (which are sorted by bin)
                    for bin, val, block in zip(hibins, hivals, hiblocks):
                        if block not in bad_blocks:
                            time = bin * dt
                            dm_candlist.append(candidate(info.DM, val, time, bin, 1))

                    # Now do the downsampling...
                    for downfact in downfacts:
                        if useffts: 
                            # Note:  FFT convolution is faster for _all_ downfacts, even 2
                            chunk2 = Num.concatenate((Num.zeros(1000), chunk, Num.zeros(1000)))
                            goodchunk = Num.convolve(chunk2, Num.ones(downfact), mode='same') / Num.sqrt(downfact)
                            goodchunk = goodchunk[overlap:-overlap]
                            #O qualcosa di simile, altrimenti non so perche' trova piu' candidati! Controllare!
                        else:
                            # The normalization of this kernel keeps the post-smoothing RMS = 1
                            kernel = Num.ones(downfact, dtype=Num.float32) / \
                                     Num.sqrt(downfact)
                            smoothed_chunk = scipy.signal.convolve(chunk, kernel, 1)
                            goodchunk = smoothed_chunk[overlap:-overlap]
                        #hibins = Num.nonzero(goodchunk>opts.threshold)[0]
                        hibins = Num.flatnonzero(goodchunk>opts.threshold)
                        hivals = goodchunk[hibins]
                        hibins += chunknum * chunklen
                        hiblocks = hibins/detrendlen
                        hibins = hibins.tolist()
                        hivals = hivals.tolist()
                        # Now walk through the new candidates and remove those
                        # that are not the highest but are within downfact/2
                        # bins of a higher signal pulse
                        hibins, hivals = prune_related1(hibins, hivals, downfact)
                        # Insert the new candidates into the candlist, but
                        # keep it sorted...
                        for bin, val, block in zip(hibins, hivals, hiblocks):
                            if block not in bad_blocks:
                                time = bin * dt
                                bisect.insort(dm_candlist,
                                              candidate(info.DM, val, time, bin, downfact))

            # Now walk through the dm_candlist and remove the ones that
            # are within the downsample proximity of a higher
            # signal-to-noise pulse
            dm_candlist = prune_related2(dm_candlist, downfacts)
            print "  Found %d pulse candidates"%len(dm_candlist)
            
            # Get rid of those near padding regions
            if info.breaks: prune_border_cases(dm_candlist, offregions)

            # Write the pulses to an ASCII output file
            if len(dm_candlist):
                #dm_candlist.sort(cmp_sigma)
                outfile.write("# DM      Sigma      Time (s)     Sample    Downfact\n")
                for cand in dm_candlist:
                    outfile.write(str(cand))
            outfile.close()

            # Add these candidates to the overall candidate list
            for cand in dm_candlist:
                candlist.append(cand)
            num_v_DMstr[DMstr] = len(dm_candlist)

    if (opts.makeplot):

        # Step through the candidates to make a SNR list
        DMs.sort()
        snrs = []
        for cand in candlist:
            if not Num.isinf(cand.sigma):
                snrs.append(cand.sigma)
        if snrs:
            maxsnr = max(int(max(snrs)), int(opts.threshold)) + 3
        else:
            maxsnr = int(opts.threshold) + 3

        # Generate the SNR histogram
        snrs = Num.asarray(snrs)
        (num_v_snr, lo_snr, d_snr, num_out_of_range) = \
                    scipy.stats.histogram(snrs,
                                          int(maxsnr-opts.threshold+1),
                                          [opts.threshold, maxsnr])
        snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \
               + lo_snr + 0.5*d_snr
        num_v_snr = num_v_snr.astype(Num.float32)
        num_v_snr[num_v_snr==0.0] = 0.001

        # Generate the DM histogram
        num_v_DM = Num.zeros(len(DMs))
        for ii, DM in enumerate(DMs):
            num_v_DM[ii] = num_v_DMstr["%.2f"%DM]
        DMs = Num.asarray(DMs)

        # open the plot device
        short_filenmbase = filenmbase[:filenmbase.find("_DM")]
        if opts.T_end > obstime:
            opts.T_end = obstime
        if pgplot_device:
            ppgplot.pgopen(pgplot_device)
        else:
            if (opts.T_start > 0.0 or opts.T_end < obstime):
                ppgplot.pgopen(short_filenmbase+'_%.0f-%.0fs_singlepulse.ps/VPS'%
                               (opts.T_start, opts.T_end))
            else:
                ppgplot.pgopen(short_filenmbase+'_singlepulse.ps/VPS')
        ppgplot.pgpap(7.5, 1.0)  # Width in inches, aspect

        # plot the SNR histogram
        ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87)
        ppgplot.pgswin(opts.threshold, maxsnr,
                       Num.log10(0.5), Num.log10(2*max(num_v_snr)))
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses")
        ppgplot.pgsch(1.0)
        ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1)

        # plot the DM histogram
        ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87)
        # Add [1] to num_v_DM in YMAX below so that YMIN != YMAX when max(num_v_DM)==0
        ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, 0.0, 1.1*max(num_v_DM+[1]))
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses")
        ppgplot.pgsch(1.0)
        ppgplot.pgbin(DMs, num_v_DM, 1)

        # plot the SNR vs DM plot 
        ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87)
        ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, opts.threshold, maxsnr)
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise")
        ppgplot.pgsch(1.0)
        cand_ts = Num.zeros(len(candlist), dtype=Num.float32)
        cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32)
        cand_DMs = Num.zeros(len(candlist), dtype=Num.float32)
        for ii, cand in enumerate(candlist):
            cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \
                         cand.time, cand.sigma, cand.DM
        ppgplot.pgpt(cand_DMs, cand_SNRs, 20)

        # plot the DM vs Time plot
        ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52)
        ppgplot.pgswin(opts.T_start, opts.T_end, min(DMs)-0.5, max(DMs)+0.5)
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
        # Circles are symbols 20-26 in increasing order
        snr_range = 12.0
        cand_symbols = (cand_SNRs-opts.threshold)/snr_range * 6.0 + 20.5
        cand_symbols = cand_symbols.astype(Num.int32)
        cand_symbols[cand_symbols>26] = 26
        for ii in [26, 25, 24, 23, 22, 21, 20]:
            inds = Num.nonzero(cand_symbols==ii)[0]
            ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii)

        # Now fill the infomation area
        ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97)
        ppgplot.pgsch(1.0)
        ppgplot.pgmtxt('T', 0.5, 0.0, 0.0,
                       "Single pulse results for '%s'"%short_filenmbase)
        ppgplot.pgsch(0.8)
        # first row
        ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\
                       info.object)
        ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):')
        ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA)
        ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f'%orig_N)
        # second row
        ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\
                       info.telescope)
        ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):')
        ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC)
        ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\
                       (orig_dt*1e6))
        # third row
        if info.instrument.find("pigot") >= 0:
            instrument = "Spigot"
        else:
            instrument = info.instrument
        ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s'%instrument)
        if (info.bary):
            ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dbary\u: %.12f'%info.epoch)
        else:
            ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dtopo\u: %.12f'%info.epoch)
        ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\
                       ((info.numchan/2-0.5)*info.chan_width+info.lofreq))
        ppgplot.pgiden()
        ppgplot.pgend()
예제 #22
0
# Give z and w values and power change
ppgplot.pgsvp(margin + imfract, 1.0 - margin / 2, margin + imfract,
              1.0 - margin / 2)
ppgplot.pgswin(0.0, 1.0, 0.0, 1.0)
ppgplot.pgtext(0.1, 0.8, "Frac Recovered" % frp)
ppgplot.pgtext(0.2, 0.65, "Power = %.3f" % frp)
ppgplot.pgtext(0.1, 0.4, "signal z = %.1f" % z)
ppgplot.pgtext(0.1, 0.25, "signal w = %.1f" % w)

# freq cut
ppgplot.pgsvp(margin, margin + imfract, margin + imfract, 1.0 - margin / 2)
ppgplot.pgswin(min(rs), max(rs), -0.1, 1.1)
ppgplot.pgbox("BCST", 0.0, 0, "BCNST", 0.0, 0)
ppgplot.pgline(rs, freqcut)
ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, "Relative Power")

#fdot cut
ppgplot.pgsvp(margin + imfract, 1.0 - margin / 2, margin, margin + imfract)
ppgplot.pgswin(-0.1, 1.1, min(zs), max(zs))
ppgplot.pgbox("BCNST", 0.0, 0, "BCST", 0.0, 0)
ppgplot.pgline(fdotcut, zs)
ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, "Relative Power")

# f-fdot image
ppgplot.pgsvp(margin, margin + imfract, margin, margin + imfract)
ppgplot.pgswin(min(rs), max(rs), min(zs), max(zs))
ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, labx)
ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, laby)
lo_col_ind, hi_col_ind = ppgplot.pgqcol()
lo_col_ind = lo_col_ind + 2