def test_subpixel_map(): subpixel_map_estimator = estimator.SubpixelMap( half_support_window=2, disparity_step=1) similarities = autograd.Variable(th.Tensor([0.1, 0.4, 0.3, 0.2, 0.3])).view(1, 5, 1, 1) disparity = subpixel_map_estimator(similarities).squeeze().item() expected_disparity = 1.52 assert np.isclose(expected_disparity, disparity, atol=1e-4) subpixel_map_estimator = estimator.SubpixelMap( half_support_window=2, disparity_step=2) disparity = subpixel_map_estimator(similarities).squeeze().item() expected_disparity = 2.124 assert np.isclose(expected_disparity, disparity, atol=1e-4)
def default_with_continuous_fully_connected(): """Returns default network with temporal convolutions.""" stereo_network = ShallowEventStereo( temporal_aggregation_module=temporal_aggregation. ContinuousFullyConnected(), spatial_aggregation_module=_shallow_spatial_aggregation(), matching_module=_shallow_matching_module(), estimator_module=estimator.SubpixelMap(half_support_window=2, disparity_step=1)) stereo_network.set_maximum_disparity(maximum_disparity=38) return stereo_network
def default_with_hand_crafted(): """Returns default network with hand crafted temporal aggregation.""" stereo_network = ShallowEventStereo( temporal_aggregation_module=Dummy(), spatial_aggregation_module=_shallow_spatial_aggregation( number_of_input_features=4), matching_module=_shallow_matching_module(), estimator_module=estimator.SubpixelMap(half_support_window=2, disparity_step=1)) stereo_network.set_maximum_disparity(maximum_disparity=38) return stereo_network
def default(maximum_disparity=255): """Returns network with default parameters.""" network = PdsNetwork( size_adapter_module=size_adapter.SizeAdapter(), embedding_module=embedding.Embedding(), matching_module=matching.Matching( operation=matching.MatchingOperation(), maximum_disparity=0), regularization_module=regularization.Regularization(), estimator_module=estimator.SubpixelMap()) network.set_maximum_disparity(maximum_disparity) return network
def default_with_hand_crafted(maximum_disparity=63): """Returns default network with continuous fully connected.""" stereo_network = DenseDeepEventStereo( size_adapter_module=size_adapter.SizeAdapter(), temporal_aggregation_module=Dummy(), spatial_aggregation_module=embedding.Embedding( number_of_input_features=4), matching_module=matching.Matching( operation=matching.MatchingOperation(), maximum_disparity=0), regularization_module=regularization.Regularization(), estimator_module=estimator.SubpixelMap()) stereo_network.set_maximum_disparity(maximum_disparity) return stereo_network
def default_with_temporal_convolutions(maximum_disparity=63): """Returns default network with temporal convolutions.""" stereo_network = DenseDeepEventStereo( size_adapter_module=size_adapter.SizeAdapter(), temporal_aggregation_module=temporal_aggregation. TemporalConvolutional(), spatial_aggregation_module=embedding.Embedding( number_of_input_features=64), matching_module=matching.Matching( operation=matching.MatchingOperation(), maximum_disparity=0), regularization_module=regularization.Regularization(), estimator_module=estimator.SubpixelMap()) stereo_network.set_maximum_disparity(maximum_disparity) return stereo_network