def main(version,method,polarity,ngrams,save=False,fold=5): data, y = features(polarity,version=version,ngrams=ngrams,skew=False,save=save) print('data: '+str(np.shape(data))) fp = fake_pred(polarity,version=version,save=save,fold=fold) results, acc = fp.ott_5fold(data,y,method,sample='prior',skew=.5) for key in acc: print(str(version)+' / '+str(polarity)+' accuracy for '+str(key)+': '+str(acc[key]))
def main(version, method, polarity, ngrams, save=False, fold=5): data, y = features(polarity, version=version, ngrams=ngrams, skew=False, save=save) print('data: ' + str(np.shape(data))) fp = fake_pred(polarity, version=version, save=save, fold=fold) results, acc = fp.ott_5fold(data, y, method, sample='prior', skew=.5) for key in acc: print( str(version) + ' / ' + str(polarity) + ' accuracy for ' + str(key) + ': ' + str(acc[key]))
import os, codecs import numpy as np import pandas as pd import nltk from extract_data import extract, extract_skew from feature_extract import features from pred import fake_pred from scipy.stats import itemfreq if __name__ == "__main__": polarities = ['negative','positive'] for polarity in polarities: data, y = features(polarity) #print('data: '+str(np.shape(data))) fp = fake_pred(version='Ott') results, acc = fp.ott_1fold(data,'NB') for key in acc: print(str(polarity)+' accuracy for '+str(key)+': '+str(acc[key]))