예제 #1
0
def main():
    print('go to model')
    print '*' * 80

    spk_global_gen=prepare_data(mode='global',train_or_test='train') #写一个假的数据生成,可以用来写模型先
    global_para=spk_global_gen.next()
    print global_para
    spk_all_list,dict_spk2idx,dict_idx2spk,mix_speech_len,speech_fre,total_frames,spk_num_total=global_para
    del spk_global_gen
    num_labels=len(spk_all_list)

    # data_generator=prepare_data('once','train')
    # data_generator=prepare_data_fake(train_or_test='train',num_labels=num_labels) #写一个假的数据生成,可以用来写模型先

    #此处顺序是 mix_speechs.shape,mix_feas.shape,aim_fea.shape,aim_spkid.shape,query.shape
    #一个例子:(5, 17040) (5, 134, 129) (5, 134, 129) (5,) (5, 32, 400, 300, 3)
    # datasize=prepare_datasize(data_generator)
    # mix_speech_len,speech_fre,total_frames,spk_num_total,video_size=datasize
    print 'Begin to build the maim model for Multi_Modal Cocktail Problem.'
    # data=data_generator.next()

    # This part is to build the 3D mix speech embedding maps.
    mix_hidden_layer_3d=MIX_SPEECH(speech_fre,mix_speech_len).cuda()
    mix_speech_classifier=MIX_SPEECH_classifier(speech_fre,mix_speech_len,num_labels).cuda()
    mix_speech_multiEmbedding=SPEECH_EMBEDDING(num_labels,config.EMBEDDING_SIZE,spk_num_total+config.UNK_SPK_SUPP).cuda()
    print mix_hidden_layer_3d
    print mix_speech_classifier
    # mix_speech_hidden=mix_hidden_layer_3d(Variable(torch.from_numpy(data[1])).cuda())

    # mix_speech_output=mix_speech_classifier(Variable(torch.from_numpy(data[1])).cuda())
    # 技巧:alpha0的时候,就是选出top_k,top_k很大的时候,就是选出来大于alpha的
    # top_k_mask_mixspeech=top_k_mask(mix_speech_output,alpha=config.ALPHA,top_k=config.MAX_MIX)
    # top_k_mask_mixspeech=top_k_mask(mix_speech_output,alpha=config.ALPHA,top_k=3)
    # print top_k_mask_mixspeech
    # mix_speech_multiEmbs=mix_speech_multiEmbedding(top_k_mask_mixspeech) # bs*num_labels(最多混合人个数)×Embedding的大小
    # mix_speech_multiEmbs=mix_speech_multiEmbedding(Variable(torch.from_numpy(top_k_mask_mixspeech),requires_grad=False).cuda()) # bs*num_labels(最多混合人个数)×Embedding的大小

    # 需要计算:mix_speech_hidden[bs,len,fre,emb]和mix_mulEmbedding[bs,num_labels,EMB]的Attention
    # 把 前者扩充为bs*num_labels,XXXXXXXXX的,后者也是,然后用ATT函数计算它们再转回来就好了 
    # mix_speech_hidden_5d=mix_speech_hidden.view(config.BATCH_SIZE,1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
    # mix_speech_hidden_5d=mix_speech_hidden_5d.expand(config.BATCH_SIZE,num_labels,mix_speech_len,speech_fre,config.EMBEDDING_SIZE).contiguous()
    # mix_speech_hidden_5d=mix_speech_hidden_5d.view(-1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
    # att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
    # att_multi_speech=att_speech_layer(mix_speech_hidden_5d,mix_speech_multiEmbs.view(-1,config.EMBEDDING_SIZE))
    # print att_multi_speech.size()
    # att_multi_speech=att_multi_speech.view(config.BATCH_SIZE,num_labels,mix_speech_len,speech_fre,-1)
    # print att_multi_speech.size()


    # This part is to conduct the video inputs.
    # query_video_layer=VIDEO_QUERY(total_frames,config.VideoSize,spk_num_total).cuda()
    query_video_layer=None
    # print query_video_layer
    # query_video_output,xx=query_video_layer(Variable(torch.from_numpy(data[4])))

    # This part is to conduct the memory.
    # hidden_size=(config.HIDDEN_UNITS)
    hidden_size=(config.EMBEDDING_SIZE)
    # x=torch.arange(0,24).view(2,3,4)
    # y=torch.ones([2,4])
    att_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
    att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
    # att=ATTENTION(4,'align')
    # mask=att(x,y)#bs*max_len

    # del data_generator
    # del data

    optimizer = torch.optim.Adam([{'params':mix_hidden_layer_3d.parameters()},
                                 {'params':mix_speech_multiEmbedding.parameters()},
                                 {'params':mix_speech_classifier.parameters()},
                                 # {'params':query_video_layer.lstm_layer.parameters()},
                                 # {'params':query_video_layer.dense.parameters()},
                                 # {'params':query_video_layer.Linear.parameters()},
                                 {'params':att_layer.parameters()},
                                 {'params':att_speech_layer.parameters()},
                                 # ], lr=0.02,momentum=0.9)
                                 ], lr=0.0002)
    if 0 and config.Load_param:
        # query_video_layer.load_state_dict(torch.load('param_video_layer_19'))
        # mix_speech_classifier.load_state_dict(torch.load('params/param_speech_multilabel_epoch249'))
        mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_WSJ0_hidden3d_180'))
        mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_WSJ0_emblayer_180'))
        att_speech_layer.load_state_dict(torch.load('params/param_mix101_WSJ0_attlayer_180'))
    loss_func = torch.nn.MSELoss()  # the target label is NOT an one-hotted
    loss_multi_func = torch.nn.MSELoss()  # the target label is NOT an one-hotted
    # loss_multi_func = torch.nn.L1Loss()  # the target label is NOT an one-hotted
    loss_query_class=torch.nn.CrossEntropyLoss()

    print '''Begin to calculate.'''
    for epoch_idx in range(config.MAX_EPOCH):
        if epoch_idx%50==0:
            for ee in optimizer.param_groups:
                ee['lr']/=2
        if epoch_idx>0:
            print 'SDR_SUM (len:{}) for epoch {} : '.format(SDR_SUM.shape,epoch_idx-1,SDR_SUM.mean())
        SDR_SUM=np.array([])
        # print_memory_state(memory.memory)
        print 'SDR_SUM for epoch {}:{}'.format(epoch_idx - 1, SDR_SUM.mean())
        for batch_idx in range(config.EPOCH_SIZE):
            print '*' * 40,epoch_idx,batch_idx,'*'*40
            train_data_gen=prepare_data('once','train')
            # train_data_gen=prepare_data('once','test')
            train_data=train_data_gen.next()

            '''混合语音len,fre,Emb 3D表示层'''
            mix_speech_hidden=mix_hidden_layer_3d(Variable(torch.from_numpy(train_data['mix_feas'])).cuda())
            # 暂时关掉video部分,因为s2 s3 s4 的视频数据不全暂时

            '''Speech self Sepration 语音自分离部分'''
            mix_speech_output=mix_speech_classifier(Variable(torch.from_numpy(train_data['mix_feas'])).cuda())
            #从数据里得到ground truth的说话人名字和vector
            # y_spk_list=[one.keys() for one in train_data['multi_spk_fea_list']]
            y_spk_list= train_data['multi_spk_fea_list']
            y_spk_gtruth,y_map_gtruth=multi_label_vector(y_spk_list,dict_spk2idx)
            # 如果训练阶段使用Ground truth的分离结果作为判别
            if config.Ground_truth:
                mix_speech_output=Variable(torch.from_numpy(y_map_gtruth)).cuda()
                if test_all_outputchannel: #把输入的mask改成全1,可以用来测试输出所有的channel
                    mix_speech_output=Variable(torch.ones(config.BATCH_SIZE,num_labels,))
                    y_map_gtruth=np.ones([config.BATCH_SIZE,num_labels])

            top_k_mask_mixspeech=top_k_mask(mix_speech_output,alpha=0.5,top_k=num_labels) #torch.Float型的
            top_k_mask_idx=[np.where(line==1)[0] for line in top_k_mask_mixspeech.numpy()]
            mix_speech_multiEmbs=mix_speech_multiEmbedding(top_k_mask_mixspeech,top_k_mask_idx) # bs*num_labels(最多混合人个数)×Embedding的大小

            assert len(top_k_mask_idx[0])==len(top_k_mask_idx[-1])
            top_k_num=len(top_k_mask_idx[0])

            #需要计算:mix_speech_hidden[bs,len,fre,emb]和mix_mulEmbedding[bs,num_labels,EMB]的Attention
            #把 前者扩充为bs*num_labels,XXXXXXXXX的,后者也是,然后用ATT函数计算它们再转回来就好了 
            mix_speech_hidden_5d=mix_speech_hidden.view(config.BATCH_SIZE,1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
            mix_speech_hidden_5d=mix_speech_hidden_5d.expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre,config.EMBEDDING_SIZE).contiguous()
            mix_speech_hidden_5d_last=mix_speech_hidden_5d.view(-1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
            # att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
            att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'dot').cuda()
            att_multi_speech=att_speech_layer(mix_speech_hidden_5d_last,mix_speech_multiEmbs.view(-1,config.EMBEDDING_SIZE))
            # print att_multi_speech.size()
            att_multi_speech=att_multi_speech.view(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre) # bs,num_labels,len,fre这个东西
            # print att_multi_speech.size()
            multi_mask=att_multi_speech
            # top_k_mask_mixspeech_multi=top_k_mask_mixspeech.view(config.BATCH_SIZE,top_k_num,1,1).expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre)
            # multi_mask=multi_mask*Variable(top_k_mask_mixspeech_multi).cuda()

            x_input_map=Variable(torch.from_numpy(train_data['mix_feas'])).cuda()
            # print x_input_map.size()
            x_input_map_multi=x_input_map.view(config.BATCH_SIZE,1,mix_speech_len,speech_fre).expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre)
            # predict_multi_map=multi_mask*x_input_map_multi
            predict_multi_map=multi_mask*x_input_map_multi
            if 0 and batch_idx%100==0:
                print multi_mask
            # print predict_multi_map

            y_multi_map=np.zeros([config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre],dtype=np.float32)
            batch_spk_multi_dict=train_data['multi_spk_fea_list']
            for idx,sample in enumerate(batch_spk_multi_dict):
                y_idx=sorted([dict_spk2idx[spk] for spk in sample.keys()])
                assert y_idx==list(top_k_mask_idx[idx])
                for jdx,oo in enumerate(y_idx):
                    y_multi_map[idx,jdx]=sample[dict_idx2spk[oo]]
            y_multi_map= Variable(torch.from_numpy(y_multi_map)).cuda()

            loss_multi_speech=loss_multi_func(predict_multi_map,y_multi_map)

            #各通道和为1的loss部分,应该可以更多的带来差异
            y_sum_map=Variable(torch.ones(config.BATCH_SIZE,mix_speech_len,speech_fre)).cuda()
            predict_sum_map=torch.sum(multi_mask,1)
            loss_multi_sum_speech=loss_multi_func(predict_sum_map,y_sum_map)
            # loss_multi_speech=loss_multi_speech #todo:以后可以研究下这个和为1的效果对比一下,暂时直接MSE效果已经很不错了。
            print 'loss 1, losssum : ',loss_multi_speech.data.cpu().numpy(),loss_multi_sum_speech.data.cpu().numpy()
            loss_multi_speech=loss_multi_speech+0.5*loss_multi_sum_speech
            print 'training multi-abs norm this batch:',torch.abs(y_multi_map-predict_multi_map).norm().data.cpu().numpy()
            print 'loss:',loss_multi_speech.data.cpu().numpy()

            if 1 or batch_idx==config.EPOCH_SIZE-1:
                bss_eval(predict_multi_map,y_multi_map,top_k_mask_idx,dict_idx2spk,train_data)
                SDR_SUM = np.append(SDR_SUM, bss_test.cal('batch_output/', 2))


            optimizer.zero_grad()   # clear gradients for next train
            loss_multi_speech.backward()         # backpropagation, compute gradients
            optimizer.step()        # apply gradients

            if 1 and epoch_idx>80 and epoch_idx%10==0 and batch_idx==config.EPOCH_SIZE-1:
                torch.save(mix_speech_multiEmbedding.state_dict(),'params/param_mix_{}_emblayer_{}'.format(config.DATASET,epoch_idx))
                torch.save(mix_hidden_layer_3d.state_dict(),'params/param_mix_{}_hidden3d_{}'.format(config.DATASET,epoch_idx))
                torch.save(att_speech_layer.state_dict(),'params/param_mix_{}_attlayer_{}'.format(config.DATASET,epoch_idx))
예제 #2
0
def main():
    print('go to model')
    print '*' * 80

    spk_global_gen = prepare_data(mode='global',
                                  train_or_test='train')  #写一个假的数据生成,可以用来写模型先
    global_para = spk_global_gen.next()
    print global_para
    spk_all_list, dict_spk2idx, dict_idx2spk, mix_speech_len, speech_fre, total_frames, spk_num_total = global_para
    del spk_global_gen
    num_labels = len(spk_all_list)

    # data_generator=prepare_data('once','train')
    # data_generator=prepare_data_fake(train_or_test='train',num_labels=num_labels) #写一个假的数据生成,可以用来写模型先

    #此处顺序是 mix_speechs.shape,mix_feas.shape,aim_fea.shape,aim_spkid.shape,query.shape
    #一个例子:(5, 17040) (5, 134, 129) (5, 134, 129) (5,) (5, 32, 400, 300, 3)
    # datasize=prepare_datasize(data_generator)
    # mix_speech_len,speech_fre,total_frames,spk_num_total,video_size=datasize
    print 'Begin to build the maim model for Multi_Modal Cocktail Problem.'
    # data=data_generator.next()

    # This part is to build the 3D mix speech embedding maps.
    mix_hidden_layer_3d = MIX_SPEECH(speech_fre, mix_speech_len).cuda()
    mix_speech_classifier = MIX_SPEECH_classifier(speech_fre, mix_speech_len,
                                                  num_labels).cuda()
    mix_speech_multiEmbedding = SPEECH_EMBEDDING(
        num_labels, config.EMBEDDING_SIZE,
        spk_num_total + config.UNK_SPK_SUPP).cuda()
    print mix_hidden_layer_3d
    print mix_speech_classifier
    # mix_speech_hidden=mix_hidden_layer_3d(Variable(torch.from_numpy(data[1])).cuda())

    # mix_speech_output=mix_speech_classifier(Variable(torch.from_numpy(data[1])).cuda())
    # 技巧:alpha0的时候,就是选出top_k,top_k很大的时候,就是选出来大于alpha的
    # top_k_mask_mixspeech=top_k_mask(mix_speech_output,alpha=config.ALPHA,top_k=config.MAX_MIX)
    # top_k_mask_mixspeech=top_k_mask(mix_speech_output,alpha=config.ALPHA,top_k=3)
    # print top_k_mask_mixspeech
    # mix_speech_multiEmbs=mix_speech_multiEmbedding(top_k_mask_mixspeech) # bs*num_labels(最多混合人个数)×Embedding的大小
    # mix_speech_multiEmbs=mix_speech_multiEmbedding(Variable(torch.from_numpy(top_k_mask_mixspeech),requires_grad=False).cuda()) # bs*num_labels(最多混合人个数)×Embedding的大小

    # 需要计算:mix_speech_hidden[bs,len,fre,emb]和mix_mulEmbedding[bs,num_labels,EMB]的Attention
    # 把 前者扩充为bs*num_labels,XXXXXXXXX的,后者也是,然后用ATT函数计算它们再转回来就好了
    # mix_speech_hidden_5d=mix_speech_hidden.view(config.BATCH_SIZE,1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
    # mix_speech_hidden_5d=mix_speech_hidden_5d.expand(config.BATCH_SIZE,num_labels,mix_speech_len,speech_fre,config.EMBEDDING_SIZE).contiguous()
    # mix_speech_hidden_5d=mix_speech_hidden_5d.view(-1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
    # att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
    # att_multi_speech=att_speech_layer(mix_speech_hidden_5d,mix_speech_multiEmbs.view(-1,config.EMBEDDING_SIZE))
    # print att_multi_speech.size()
    # att_multi_speech=att_multi_speech.view(config.BATCH_SIZE,num_labels,mix_speech_len,speech_fre,-1)
    # print att_multi_speech.size()

    # This part is to conduct the video inputs.
    # query_video_layer=VIDEO_QUERY(total_frames,config.VideoSize,spk_num_total).cuda()
    query_video_layer = None
    # print query_video_layer
    # query_video_output,xx=query_video_layer(Variable(torch.from_numpy(data[4])))

    # This part is to conduct the memory.
    # hidden_size=(config.HIDDEN_UNITS)
    hidden_size = (config.EMBEDDING_SIZE)
    # x=torch.arange(0,24).view(2,3,4)
    # y=torch.ones([2,4])
    att_layer = ATTENTION(config.EMBEDDING_SIZE, 'align').cuda()
    att_speech_layer = ATTENTION(config.EMBEDDING_SIZE, 'align').cuda()
    # att=ATTENTION(4,'align')
    # mask=att(x,y)#bs*max_len

    # del data_generator
    # del data

    optimizer = torch.optim.Adam(
        [
            {
                'params': mix_hidden_layer_3d.parameters()
            },
            {
                'params': mix_speech_multiEmbedding.parameters()
            },
            {
                'params': mix_speech_classifier.parameters()
            },
            # {'params':query_video_layer.lstm_layer.parameters()},
            # {'params':query_video_layer.dense.parameters()},
            # {'params':query_video_layer.Linear.parameters()},
            {
                'params': att_layer.parameters()
            },
            {
                'params': att_speech_layer.parameters()
            },
            # ], lr=0.02,momentum=0.9)
        ],
        lr=0.00005)
    if 1 and config.Load_param:
        # query_video_layer.load_state_dict(torch.load('param_video_layer_19'))
        # mix_speech_classifier.load_state_dict(torch.load('params/param_speech_123onezeroag3_WSJ0_multilabel_epoch40'))
        mix_speech_classifier.load_state_dict(
            torch.load(
                'params/param_speech_123onezeroag4_WSJ0_multilabel_epoch70'))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_WSJ0_hidden3d_180'))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_WSJ0_emblayer_180'))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_WSJ0_attlayer_180'))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_dbag1nosum_WSJ0_hidden3d_350',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_dbag1nosum_WSJ0_emblayer_350',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_dbag1nosum_WSJ0_attlayer_350',map_location={'cuda:1':'cuda:0'}))

        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix2or3_db_WSJ0_hidden3d_560',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix2or3_db_WSJ0_emblayer_560',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix2or3_db_WSJ0_attlayer_560',map_location={'cuda:1':'cuda:0'}))

        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_dbag2sum_WSJ0_hidden3d_460',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_dbag2sum_WSJ0_emblayer_460',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_dbag2sum_WSJ0_attlayer_460',map_location={'cuda:1':'cuda:0'}))

        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_dbdropout_WSJ0_hidden3d_370',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_dbdropout_WSJ0_emblayer_370',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_dbdropout_WSJ0_attlayer_370',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_4db_WSJ0_hidden3d_110',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_4db_WSJ0_emblayer_110',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_4db_WSJ0_attlayer_110',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_classifier.load_state_dict(torch.load('params/param_speech_4lstm_multilabelloss30map_epoch440'))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_dbdropoutag_WSJ0_attlayer_220',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_dbdropoutag_WSJ0_hidden3d_220',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_dbdropoutag_WSJ0_emblayer_220',map_location={'cuda:1':'cuda:0'}))

        # att_speech_layer.load_state_dict(torch.load('params/param_mix2_db2dropout_WSJ0_attlayer_495',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix2_db2dropout_WSJ0_hidden3d_495',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix2_db2dropout_WSJ0_emblayer_495',map_location={'cuda:1':'cuda:0'}))
        att_speech_layer.load_state_dict(
            torch.load('params/param_mix2_db2dropout_WSJ0_attlayer_90',
                       map_location={'cuda:1': 'cuda:0'}))
        mix_hidden_layer_3d.load_state_dict(
            torch.load('params/param_mix2_db2dropout_WSJ0_hidden3d_90',
                       map_location={'cuda:1': 'cuda:0'}))
        mix_speech_multiEmbedding.load_state_dict(
            torch.load('params/param_mix2_db2dropout_WSJ0_emblayer_90',
                       map_location={'cuda:1': 'cuda:0'}))

        # att_speech_layer.load_state_dict(torch.load('params/param_mix1to3_dbdropoutag1_WSJ0_attlayer_430',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix1to3_dbdropoutag1_WSJ0_hidden3d_430',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix1to3_dbdropoutag1_WSJ0_emblayer_430',map_location={'cuda:1':'cuda:0'}))
    loss_func = torch.nn.MSELoss()  # the target label is NOT an one-hotted
    loss_multi_func = torch.nn.MSELoss(
    )  # the target label is NOT an one-hotted
    # loss_multi_func = torch.nn.L1Loss()  # the target label is NOT an one-hotted
    loss_query_class = torch.nn.CrossEntropyLoss()

    print '''Begin to calculate.'''
    for epoch_idx in range(config.MAX_EPOCH):
        if epoch_idx > 0:
            print 'SDR_SUM (len:{}) for epoch {} : {}'.format(
                SDR_SUM.shape, epoch_idx - 1, SDR_SUM.mean())
        SDR_SUM = np.array([])
        # print_memory_state(memory.memory)
        print 'SDR_SUM for epoch {}:{}'.format(epoch_idx - 1, SDR_SUM.mean())
        for batch_idx in range(config.EPOCH_SIZE):
            print '*' * 40, epoch_idx, batch_idx, '*' * 40
            train_data_gen = prepare_data('once', 'train')
            # train_data_gen=prepare_data('once','test')
            # train_data_gen=prepare_data('once','eval_test')
            train_data = train_data_gen.next()
            '''混合语音len,fre,Emb 3D表示层'''
            mix_speech_hidden = mix_hidden_layer_3d(
                Variable(torch.from_numpy(train_data['mix_feas'])).cuda())
            # 暂时关掉video部分,因为s2 s3 s4 的视频数据不全暂时
            '''Speech self Sepration 语音自分离部分'''
            mix_speech_output = mix_speech_classifier(
                Variable(torch.from_numpy(train_data['mix_feas'])).cuda())
            #从数据里得到ground truth的说话人名字和vector
            y_spk_list = [
                one.keys() for one in train_data['multi_spk_fea_list']
            ]
            y_spk_list = train_data['multi_spk_fea_list']
            y_spk_gtruth, y_map_gtruth = multi_label_vector(
                y_spk_list, dict_spk2idx)
            # 如果训练阶段使用Ground truth的分离结果作为判别
            if 1 and config.Ground_truth:
                mix_speech_output = Variable(
                    torch.from_numpy(y_map_gtruth)).cuda()
                if 0 and test_all_outputchannel:  #把输入的mask改成全1,可以用来测试输出所有的channel
                    mix_speech_output = Variable(
                        torch.ones(
                            config.BATCH_SIZE,
                            num_labels,
                        ))
                    y_map_gtruth = np.ones([config.BATCH_SIZE, num_labels])

            max_num_labels = 2
            top_k_mask_mixspeech, top_k_sort_index = top_k_mask(
                mix_speech_output, alpha=-0.5,
                top_k=max_num_labels)  #torch.Float型的
            top_k_mask_idx = [
                np.where(line == 1)[0]
                for line in top_k_mask_mixspeech.numpy()
            ]
            mix_speech_multiEmbs = mix_speech_multiEmbedding(
                top_k_mask_mixspeech,
                top_k_mask_idx)  # bs*num_labels(最多混合人个数)×Embedding的大小

            assert len(top_k_mask_idx[0]) == len(top_k_mask_idx[-1])
            top_k_num = len(top_k_mask_idx[0])

            #需要计算:mix_speech_hidden[bs,len,fre,emb]和mix_mulEmbedding[bs,num_labels,EMB]的Attention
            #把 前者扩充为bs*num_labels,XXXXXXXXX的,后者也是,然后用ATT函数计算它们再转回来就好了
            mix_speech_hidden_5d = mix_speech_hidden.view(
                config.BATCH_SIZE, 1, mix_speech_len, speech_fre,
                config.EMBEDDING_SIZE)
            mix_speech_hidden_5d = mix_speech_hidden_5d.expand(
                config.BATCH_SIZE, top_k_num, mix_speech_len, speech_fre,
                config.EMBEDDING_SIZE).contiguous()
            mix_speech_hidden_5d_last = mix_speech_hidden_5d.view(
                -1, mix_speech_len, speech_fre, config.EMBEDDING_SIZE)
            # att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
            att_speech_layer = ATTENTION(config.EMBEDDING_SIZE, 'dot').cuda()
            att_multi_speech = att_speech_layer(
                mix_speech_hidden_5d_last,
                mix_speech_multiEmbs.view(-1, config.EMBEDDING_SIZE))
            # print att_multi_speech.size()
            att_multi_speech = att_multi_speech.view(
                config.BATCH_SIZE, top_k_num, mix_speech_len,
                speech_fre)  # bs,num_labels,len,fre这个东西
            # print att_multi_speech.size()
            multi_mask = att_multi_speech
            # top_k_mask_mixspeech_multi=top_k_mask_mixspeech.view(config.BATCH_SIZE,top_k_num,1,1).expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre)
            # multi_mask=multi_mask*Variable(top_k_mask_mixspeech_multi).cuda()

            x_input_map = Variable(torch.from_numpy(
                train_data['mix_feas'])).cuda()
            # print x_input_map.size()
            x_input_map_multi = x_input_map.view(
                config.BATCH_SIZE, 1, mix_speech_len,
                speech_fre).expand(config.BATCH_SIZE, top_k_num,
                                   mix_speech_len, speech_fre)
            # predict_multi_map=multi_mask*x_input_map_multi
            predict_multi_map = multi_mask * x_input_map_multi

            bss_eval_fromGenMap(multi_mask, x_input_map, top_k_mask_mixspeech,
                                dict_idx2spk, train_data, top_k_sort_index)
            SDR_SUM = np.append(SDR_SUM, bss_test.cal('batch_output/', 2))
            print 'SDR_SUM (len:{}) for epoch {} : {}'.format(
                SDR_SUM.shape, epoch_idx, SDR_SUM.mean())
def main():
    print('go to model')
    print '*' * 80

    spk_global_gen=prepare_data(mode='global',train_or_test='train') #写一个假的数据生成,可以用来写模型先
    global_para=spk_global_gen.next()
    print global_para
    spk_all_list,dict_spk2idx,dict_idx2spk,mix_speech_len,speech_fre,total_frames,spk_num_total=global_para
    del spk_global_gen
    num_labels=len(spk_all_list)


    #此处顺序是 mix_speechs.shape,mix_feas.shape,aim_fea.shape,aim_spkid.shape,query.shape
    #一个例子:(5, 17040) (5, 134, 129) (5, 134, 129) (5,) (5, 32, 400, 300, 3)
    # datasize=prepare_datasize(data_generator)
    # mix_speech_len,speech_fre,total_frames,spk_num_total,video_size=datasize
    print 'Begin to build the maim model for Multi_Modal Cocktail Problem.'
    # data=data_generator.next()

    # This part is to build the 3D mix speech embedding maps.
    mix_hidden_layer_3d=MIX_SPEECH(speech_fre,mix_speech_len).cuda()
    mix_speech_classifier=MIX_SPEECH_classifier(speech_fre,mix_speech_len,num_labels).cuda()
    mix_speech_multiEmbedding=SPEECH_EMBEDDING(num_labels,config.EMBEDDING_SIZE,spk_num_total+config.UNK_SPK_SUPP).cuda()
    print mix_hidden_layer_3d
    print mix_speech_classifier
    # mix_speech_hidden=mix_hidden_layer_3d(Variable(torch.from_numpy(data[1])).cuda())

    hidden_size=(config.EMBEDDING_SIZE)
    # x=torch.arange(0,24).view(2,3,4)
    # y=torch.ones([2,4])
    att_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
    att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
    print att_speech_layer

    optimizer = torch.optim.Adam([{'params':mix_hidden_layer_3d.parameters()},
                                 {'params':mix_speech_multiEmbedding.parameters()},
                                 {'params':mix_speech_classifier.parameters()},
                                 # {'params':query_video_layer.lstm_layer.parameters()},
                                 # {'params':query_video_layer.dense.parameters()},
                                 # {'params':query_video_layer.Linear.parameters()},
                                 {'params':att_layer.parameters()},
                                 {'params':att_speech_layer.parameters()},
                                 # ], lr=0.02,momentum=0.9)
                                 ], lr=0.0002)
    if 1 and config.Load_param:
        # query_video_layer.load_state_dict(torch.load('param_video_layer_19'))
        # mix_speech_classifier.load_state_dict(torch.load('params/param_speech_123onezeroag3_WSJ0_multilabel_epoch40'))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_WSJ0_hidden3d_180'))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_WSJ0_emblayer_180'))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_WSJ0_attlayer_180'))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_dbag1nosum_WSJ0_hidden3d_250',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_dbag1nosum_WSJ0_emblayer_250',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_dbag1nosum_WSJ0_attlayer_250',map_location={'cuda:1':'cuda:0'}))

        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix2or3_db_WSJ0_hidden3d_560',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix2or3_db_WSJ0_emblayer_560',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix2or3_db_WSJ0_attlayer_560',map_location={'cuda:1':'cuda:0'}))

        mix_speech_classifier.load_state_dict(torch.load('params/param_speech_4lstm_multilabelloss30map_epoch440'))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_dbag2sum_WSJ0_hidden3d_460',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_dbag2sum_WSJ0_emblayer_460',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_dbag2sum_WSJ0_attlayer_460',map_location={'cuda:1':'cuda:0'}))

        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_dbdropout_WSJ0_hidden3d_370',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_dbdropout_WSJ0_emblayer_370',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_dbdropout_WSJ0_attlayer_370',map_location={'cuda:1':'cuda:0'}))

        # att_speech_layer.load_state_dict(torch.load('params/param_mix101_dbdropoutag_WSJ0_attlayer_220',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix101_dbdropoutag_WSJ0_hidden3d_220',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix101_dbdropoutag_WSJ0_emblayer_220',map_location={'cuda:1':'cuda:0'}))

        # att_speech_layer.load_state_dict(torch.load('params/param_mix2or3_dbdropoutag_WSJ0_attlayer_180',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix2or3_dbdropoutag_WSJ0_hidden3d_180',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix2or3_dbdropoutag_WSJ0_emblayer_180',map_location={'cuda:1':'cuda:0'}))

        att_speech_layer.load_state_dict(torch.load('params/param_mix2_db2dropout_WSJ0_attlayer_495',map_location={'cuda:1':'cuda:0'}))
        mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix2_db2dropout_WSJ0_hidden3d_495',map_location={'cuda:1':'cuda:0'}))
        mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix2_db2dropout_WSJ0_emblayer_495',map_location={'cuda:1':'cuda:0'}))

        # att_speech_layer.load_state_dict(torch.load('params/param_mix2or3_db2dropout_WSJ0_attlayer_95',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix2or3_db2dropout_WSJ0_hidden3d_95',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix2or3_db2dropout_WSJ0_emblayer_95',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix1to3_dbdropoutag1_WSJ0_attlayer_500',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix1to3_dbdropoutag1_WSJ0_hidden3d_500',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix1to3_dbdropoutag1_WSJ0_emblayer_500',map_location={'cuda:1':'cuda:0'}))

        # att_speech_layer.load_state_dict(torch.load('params/param_mix2_40lstm2dbdro_WSJ0_attlayer_835',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix2_40lstm2dbdro_WSJ0_hidden3d_835',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix2_40lstm2dbdro_WSJ0_emblayer_835',map_location={'cuda:1':'cuda:0'}))
        # att_speech_layer.load_state_dict(torch.load('params/param_mix2_40lstmdbdropout_WSJ0_attlayer_200',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_mix2_40lstm3dbdropout_WSJ0_hidden3d_200',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_mix2_40lstm3dbdropout_WSJ0_emblayer_200',map_location={'cuda:1':'cuda:0'}))

        '''with Noise'''
        # att_speech_layer.load_state_dict(torch.load('params/param_noicemix2or3_db2dropout_WSJ0_attlayer_80',map_location={'cuda:1':'cuda:0'}))
        # mix_hidden_layer_3d.load_state_dict(torch.load('params/param_noicemix2or3_db2dropout_WSJ0_hidden3d_80',map_location={'cuda:1':'cuda:0'}))
        # mix_speech_multiEmbedding.load_state_dict(torch.load('params/param_noicemix2or3_db2dropout_WSJ0_emblayer_80',map_location={'cuda:1':'cuda:0'}))
    loss_func = torch.nn.MSELoss()  # the target label is NOT an one-hotted
    loss_multi_func = torch.nn.MSELoss()  # the target label is NOT an one-hotted
    # loss_multi_func = torch.nn.L1Loss()  # the target label is NOT an one-hotted
    loss_query_class=torch.nn.CrossEntropyLoss()

    print '''Begin to calculate.'''
    SDR_SUM_total=np.array([])
    for epoch_idx in range(config.MAX_EPOCH):
        if epoch_idx>0:
            print 'SDR_SUM (len:{}) for epoch {} : {}'.format(SDR_SUM.shape,epoch_idx-1,SDR_SUM.mean())
        SDR_SUM=np.array([])
        # print 'SDR_SUM for epoch {}:{}'.format(epoch_idx - 1, SDR_SUM.mean())
        dst='batch_output'
        if os.path.exists(dst):
            print " cleanup: " + dst + "/"
            shutil.rmtree(dst)
        os.makedirs(dst)
        for batch_idx in range(config.EPOCH_SIZE):
            print '*' * 40,epoch_idx,batch_idx,'*'*40
            train_data_gen=prepare_data('once','train')
            # train_data_gen=prepare_data('once','test')
            train_data_gen=prepare_data('once','eval_test')
            train_data=train_data_gen.next()
            mix_feas=train_data['mix_feas']
            '''混合语音len,fre,Emb 3D表示层'''
            mix_speech_hidden=mix_hidden_layer_3d(Variable(torch.from_numpy(train_data['mix_feas'])).cuda())
            # 暂时关掉video部分,因为s2 s3 s4 的视频数据不全暂时

            '''Speech self Sepration 语音自分离部分'''
            mix_speech_output=mix_speech_classifier(Variable(torch.from_numpy(train_data['mix_feas'])).cuda())
            #从数据里得到ground truth的说话人名字和vector
            # y_spk_list=[one.keys() for one in train_data['multi_spk_fea_list']]
            # y_spk_list= train_data['multi_spk_fea_list']
            # y_spk_gtruth,y_map_gtruth=multi_label_vector(y_spk_list,dict_spk2idx)
            # 如果训练阶段使用Ground truth的分离结果作为判别
            if 0 and config.Ground_truth:
                mix_speech_output=Variable(torch.from_numpy(y_map_gtruth)).cuda()
                if test_all_outputchannel: #把输入的mask改成全1,可以用来测试输出所有的channel
                    mix_speech_output=Variable(torch.ones(config.BATCH_SIZE,num_labels,))
                    y_map_gtruth=np.ones([config.BATCH_SIZE,num_labels])
            recu_spk_list=OrderedDict() #每step对应spk以及分离出来的目标语音
            speech_history=[] #将每step剩余speech 频谱的历史记录下来
            bss_eval_groundtrue(train_data,batch_idx)

            now_feas=train_data['mix_feas']
            while True:
                speech_history.append(now_feas)
                max_num_labels=3
                top_k_mask_mixspeech,top_k_sort_index=top_k_mask(mix_speech_output,alpha=-0.3,top_k=max_num_labels) #torch.Float型的
                # top_k_mask_idx=[np.where(line==1)[0] for line in top_k_mask_mixspeech.numpy()]
                top_k_mask_idx=top_k_sort_index
                #过滤一下,把之前见过的spk过滤掉
                print 'predict spk:',top_k_mask_idx[0]
                for k in top_k_mask_idx[0]:
                    if k not in recu_spk_list.keys():
                        top_k_mask_idx=[[k]]
                        break
                print 'flitered spk:',top_k_mask_idx[0]
                # 如果过滤完了之后啥也没有了,那么就结束了
                if len(top_k_mask_idx[0])==0:
                    break
                # elif top_k_mask_idx[0][0] in speech_history

                mix_speech_multiEmbs=mix_speech_multiEmbedding(top_k_mask_mixspeech,top_k_mask_idx) # bs*num_labels(最多混合人个数)×Embedding的大小

                assert len(top_k_mask_idx[0])==len(top_k_mask_idx[-1])
                top_k_num=len(top_k_mask_idx[0])

                #需要计算:mix_speech_hidden[bs,len,fre,emb]和mix_mulEmbedding[bs,num_labels,EMB]的Attention
                #把 前者扩充为bs*num_labels,XXXXXXXXX的,后者也是,然后用ATT函数计算它们再转回来就好了 
                mix_speech_hidden_5d=mix_speech_hidden.view(config.BATCH_SIZE,1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
                mix_speech_hidden_5d=mix_speech_hidden_5d.expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre,config.EMBEDDING_SIZE).contiguous()
                mix_speech_hidden_5d_last=mix_speech_hidden_5d.view(-1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
                # att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
                att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'dot').cuda()
                att_multi_speech=att_speech_layer(mix_speech_hidden_5d_last,mix_speech_multiEmbs.view(-1,config.EMBEDDING_SIZE))
                # print att_multi_speech.size()
                att_multi_speech=att_multi_speech.view(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre) # bs,num_labels,len,fre这个东西
                # print att_multi_speech.size()
                multi_mask=att_multi_speech
                # multi_mask=(att_multi_speech>0.5)
                # multi_mask=Variable(torch.from_numpy(np.float32(multi_mask.data.cpu().numpy()))).cuda()
                # top_k_mask_mixspeech_multi=top_k_mask_mixspeech.view(config.BATCH_SIZE,top_k_num,1,1).expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre)
                # multi_mask=multi_mask*Variable(top_k_mask_mixspeech_multi).cuda()

                x_input_map=Variable(torch.from_numpy(now_feas)).cuda()
                # print x_input_map.size()
                x_input_map_multi=x_input_map.view(config.BATCH_SIZE,1,mix_speech_len,speech_fre).expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre)
                # predict_multi_map=multi_mask*x_input_map_multi
                predict_multi_map=multi_mask*x_input_map_multi #该说话人预测出来的频谱
                recu_spk_list[top_k_mask_idx[0][0]]=predict_multi_map

                pre_spk=dict_idx2spk[top_k_mask_idx[0][0]]
                num_step=len(recu_spk_list)
                print 'Now output the {} th spk , closest to spk <{}> in train list.'.format(num_step,pre_spk)
                # bss_eval_recu(multi_mask,x_input_map,top_k_mask_mixspeech,pre_spk,train_data,num_step-1,batch_idx)

                if num_step>=2:
                    # bss_eval_recu(multi_mask,x_input_map,top_k_mask_mixspeech,pre_spk,train_data,num_step,batch_idx)
                    break

                now_feas=((1-multi_mask)*x_input_map_multi).data.cpu().numpy().reshape(1,mix_speech_len,speech_fre)
                mix_speech_output=mix_speech_classifier(Variable(torch.from_numpy(now_feas)).cuda())
                mix_speech_hidden=mix_hidden_layer_3d(Variable(torch.from_numpy(now_feas)).cuda())


            cal_spk=recu_spk_list.keys()
            mix_speech_multiEmbs=mix_speech_multiEmbedding(top_k_mask_mixspeech,cal_spk) # bs*num_labels(最多混合人个数)×Embedding的大小

            top_k_num=len(cal_spk)

            #需要计算:mix_speech_hidden[bs,len,fre,emb]和mix_mulEmbedding[bs,num_labels,EMB]的Attention
            #把 前者扩充为bs*num_labels,XXXXXXXXX的,后者也是,然后用ATT函数计算它们再转回来就好了 
            mix_speech_hidden=mix_hidden_layer_3d(Variable(torch.from_numpy(train_data['mix_feas'])).cuda())
            mix_speech_hidden_5d=mix_speech_hidden.view(config.BATCH_SIZE,1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
            mix_speech_hidden_5d=mix_speech_hidden_5d.expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre,config.EMBEDDING_SIZE).contiguous()
            mix_speech_hidden_5d_last=mix_speech_hidden_5d.view(-1,mix_speech_len,speech_fre,config.EMBEDDING_SIZE)
            # att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'align').cuda()
            att_speech_layer=ATTENTION(config.EMBEDDING_SIZE,'dot').cuda()
            att_multi_speech=att_speech_layer(mix_speech_hidden_5d_last,mix_speech_multiEmbs.view(-1,config.EMBEDDING_SIZE))
            # print att_multi_speech.size()
            att_multi_speech=att_multi_speech.view(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre) # bs,num_labels,len,fre这个东西
            # print att_multi_speech.size()
            multi_mask=att_multi_speech
            # multi_mask=(att_multi_speech>0.5)
            # multi_mask=Variable(torch.from_numpy(np.float32(multi_mask.data.cpu().numpy()))).cuda()
            # top_k_mask_mixspeech_multi=top_k_mask_mixspeech.view(config.BATCH_SIZE,top_k_num,1,1).expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre)
            # multi_mask=multi_mask*Variable(top_k_mask_mixspeech_multi).cuda()

            x_input_map=Variable(torch.from_numpy(train_data['mix_feas'])).cuda()
            # print x_input_map.size()
            x_input_map_multi=x_input_map.view(config.BATCH_SIZE,1,mix_speech_len,speech_fre).expand(config.BATCH_SIZE,top_k_num,mix_speech_len,speech_fre)
            bss_eval_fromGenMap(multi_mask,x_input_map,top_k_mask_mixspeech,dict_idx2spk,train_data,batch_idx)



        # SDR_SUM = np.append(SDR_SUM, bss_test.cal('batch_output/', 2))
        # print 'SDR_SUM (len:{}) for epoch {} : {}'.format(SDR_SUM.shape,epoch_idx,SDR_SUM.mean())
        # 1/0
        SDR_SUM_total = np.append(SDR_SUM_total, bss_test.cal('batch_output/', 2))
        print 'SDR_SUM (len:{}) for epoch {} : {}'.format(SDR_SUM_total.shape,epoch_idx,SDR_SUM_total.mean())